671 research outputs found
Very Low Temperature Tunnelling Spectroscopy in the heavy fermion superconductor PrOsSb
We present scanning tunnelling spectroscopy measurements on the heavy fermion
superconductor PrOsSb. Our results show that the superconducting gap
opens over a large part of the Fermi surface. The deviations from isotropic BCS
s-wave behavior are discussed in terms of a finite distribution of values of
the superconducting gap.Comment: 4 pages, 4 figure
Valoración del estado nutricional por parámetros antropométricos en dos unidades de hemodiálisis
Objetivos. Conocer el estado nutricional de los pacientes en nuestra unidad que nos sirva de guía para preparar la metodología de intervención
BCS theory for s+g-wave superconductivity borocarbides Y(Lu)NiBC
The s+g mixed gap function \Delta_k=\Delta {[(1-x)-x\sin^4\theta\cos4\phi]}
(x: weight of g-wave component) has been studied within BCS theory. By suitable
consideration of the pairing interaction, we have confirmed that the
coexistence of s- and g-wave, as well as the state with equal s and g
amplitudes (i.e., x=1/2) may be stable. This provides the semi-phenomenological
theory for the s+g-wave superconductivity with point nodes which has been
observed experimentally in borocarbides YNi_2B_2C and possibly in LuNi_2B_2C.Comment: 5 pages, 3 figure
Magnetic field dependence of superconducting energy gaps in YNi2B2C: Evidence of multiband superconductivity
We present results of in field directional point contact spectroscopy (DPCS)
study in the quaternary borocarbide superconductor YNi2B2C, which is
characterized by a highly anisotropic superconducting gap function. For I||a,
the superconducting energy gap (D), decreases linearly with magnetic field and
vanishes around 3.25T which is well below the upper critical field (Hc2~6T)
measured at the same temperature (2.2K). For I||c, on the other hand, D
decreases weakly with magnetic field but the broadening parameter (G) increases
rapidly with magnetic field with the absence of any resolvable feature above
3.5T. From an analysis of the field variation of energy gaps and the zero bias
density of states we show that the unconventional gap function observed in this
material could originate from multiband superconductivity.Comment: 19 pages including figures (final version
Scanning Tunneling Spectroscopy in MgB 2
We present extensive Scanning Tunneling Spectroscopy (STM/S) measurements at
low temperatures in the multiband superconductor MgB. We find a similar
behavior in single crystalline samples and in single grains, which clearly
shows the partial superconducting density of states of both the and
bands of this material. The superconducting gaps corresponding to both
bands are not single valued. Instead, we find a distribution of superconducting
gaps centered around 1.9mV and 7.5mV, corresponding respectively to each set of
bands. Interband scattering effects, leading to a single gap structure at 4mV
and a smaller critical temperature can be observed in some locations on the
surface. S-S junctions formed by pieces of MgB attached to the tip clearly
show the subharmonic gap structure associated with this type of junctions. We
discuss future developments and possible new effects associated with the
multiband nature of superconductivity in this compound.Comment: 11 pages, 6 figures, submitted to Physica
Phonon-mediated anisotropic superconductivity in the Y and Lu nickel borocarbides
We present scanning tunneling spectroscopy and microscopy measurements at low
temperatures in the borocarbide materials RNi2B2C (R=Y, Lu). The characteristic
strong coupling structure due to the pairing interaction is unambiguously
resolved in the superconducting density of states. It is located at the
superconducting gap plus the energy corresponding to a phonon mode identified
in previous neutron scattering experiments. These measurements also show that
this mode is coupled to the electrons through a highly anisotropic
electron-phonon interaction originated by a nesting feature of the Fermi
surface. Our experiments, from which we can extract a large electron-phonon
coupling parameter lambda (between 0.5 and 0.8), demonstrate that this
anisotropic electron-phonon coupling has an essential contribution to the
pairing interaction. The tunneling spectra show an anisotropic s-wave
superconducting gap function.Comment: 5 pages, 3 figure
Tunneling spectroscopy in the magnetic superconductor TmNi2B2C
We present new measurements about the tunneling conductance in the
borocarbide superconductor TmNiBC. The results show a very good
agreement with weak coupling BCS theory, without any lifetime broadening
parameter, over the whole sample surface. We detect no particular change of the
tunneling spectroscopy below 1.5K, when both the antiferromagnetic (AF) phase
and the superconducting order coexist.Comment: Submitted to Phys. Rev. B, Rapid Communication
A global method for coupling transport with chemistry in heterogeneous porous media
Modeling reactive transport in porous media, using a local chemical
equilibrium assumption, leads to a system of advection-diffusion PDE's coupled
with algebraic equations. When solving this coupled system, the algebraic
equations have to be solved at each grid point for each chemical species and at
each time step. This leads to a coupled non-linear system. In this paper a
global solution approach that enables to keep the software codes for transport
and chemistry distinct is proposed. The method applies the Newton-Krylov
framework to the formulation for reactive transport used in operator splitting.
The method is formulated in terms of total mobile and total fixed
concentrations and uses the chemical solver as a black box, as it only requires
that on be able to solve chemical equilibrium problems (and compute
derivatives), without having to know the solution method. An additional
advantage of the Newton-Krylov method is that the Jacobian is only needed as an
operator in a Jacobian matrix times vector product. The proposed method is
tested on the MoMaS reactive transport benchmark.Comment: Computational Geosciences (2009)
http://www.springerlink.com/content/933p55085742m203/?p=db14bb8c399b49979ba8389a3cae1b0f&pi=1
Influencia de un plan de educación sanitaria en alimentación y nutrición para pacientes/familiares en dos unidades de hemodiálisis
Objetivos. Aumentar los conocimientos de los pacientes en hemodiálisis sobre su alimentación y nutrición para mejorar su estado nutricional
- …
