579 research outputs found
Quantum-classical transition in Scale Relativity
The theory of scale relativity provides a new insight into the origin of
fundamental laws in physics. Its application to microphysics allows us to
recover quantum mechanics as mechanics on a non-differentiable (fractal)
spacetime. The Schrodinger and Klein-Gordon equations are demonstrated as
geodesic equations in this framework. A development of the intrinsic properties
of this theory, using the mathematical tool of Hamilton's bi-quaternions, leads
us to a derivation of the Dirac equation within the scale-relativity paradigm.
The complex form of the wavefunction in the Schrodinger and Klein-Gordon
equations follows from the non-differentiability of the geometry, since it
involves a breaking of the invariance under the reflection symmetry on the
(proper) time differential element (ds - ds). This mechanism is generalized
for obtaining the bi-quaternionic nature of the Dirac spinor by adding a
further symmetry breaking due to non-differentiability, namely the differential
coordinate reflection symmetry (dx^mu - dx^mu) and by requiring invariance
under parity and time inversion. The Pauli equation is recovered as a
non-relativistic-motion approximation of the Dirac equation.Comment: 28 pages, no figur
Australian Sphingidae – DNA Barcodes Challenge Current Species Boundaries and Distributions
© 2014 Rougerie et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The attached file is the published version of the article
Increasing human dominance of tropical forests
Tropical forests house over half of Earth’s biodiversity and are an important influence on the climate system. These forests are experiencing escalating human influence, altering their health and the provision of important ecosystem functions and services. Impacts started with hunting and millennia-old megafaunal extinctions (Phase I), continuing via low-intensity shifting cultivation (Phase II), to today’s global integration (Phase III), dominated by intensive permanent agriculture, industrial logging, and attendant fires and fragmentation. Such ongoing pressures together with an intensification of global environmental change may severely degrade forests in the future (Phase IV, global simplification) unless new ‘development without destruction’ pathways are established alongside climate change resilient landscape designs
Non-Invasive Measure of Stenosis Severity Through Spectral Analysis [post-print]
A preliminary study on the effect of stenosis severity in a restricted flow is performed through the spectral analysis of sound signals. A model pulsatile flow that uses differing area reductions through an opening was employed, where contact microphones secured outside of the reduction measured the sound intensity in the flow. A spectral analysis shows the narrowing results in increased magnitude of frequencies in the range of 15 to 170Hz, with different narrowing cases resulting in different peak frequencies. Low frequency content up to 10 Hz remains approximately unchanged. This simplistic approach of signal processing forms a basis for enhanced understanding and diagnosis of the severity of narrowing in an internal flow, and encourages future research into more complicated bispectral methods of analysis. The results show a clear difference between regular turbulence present in an internal flow and enhanced turbulence due to a stenosis or similar restriction in the flow
Detecting and correcting partial errors: Evidence for efficient control without conscious access
Appropriate reactions to erroneous actions are essential to keeping behavior adaptive. Erring, however, is not an all-or-none process: electromyographic (EMG) recordings of the responding muscles have revealed that covert incorrect response activations (termed "partial errors") occur on a proportion of overtly correct trials. The occurrence of such "partial errors" shows that incorrect response activations could be corrected online, before turning into overt errors. In the present study, we showed that, unlike overt errors, such "partial errors" are poorly consciously detected by participants, who could report only one third of their partial errors. Two parameters of the partial errors were found to predict detection: the surface of the incorrect EMG burst (larger for detected) and the correction time (between the incorrect and correct EMG onsets; longer for detected). These two parameters provided independent information. The correct(ive) responses associated with detected partial errors were larger than the "pure-correct" ones, and this increase was likely a consequence, rather than a cause, of the detection. The respective impacts of the two parameters predicting detection (incorrect surface and correction time), along with the underlying physiological processes subtending partial-error detection, are discussed
Habitat specificity of a threatened and endemic cliff-dwelling halophyte
Research ArticleCoastal areas and other saline environments are major contributors to regional and global biodiversity
patterns. In these environments, rapidly changing gradients require highly specialized plants like halophytes.
In European coastal cliff-tops, rocky and sandy seashores, and saltmarshes, typical halophytes from the genus
Limonium are commonly found. Among them, the aneuploid tetraploid (2n ¼ 4x ¼ 35, 36, 37) Limonium multiflorum,
endemic to the west coast of Portugal, is an interesting case study for investigating the ecology and conservation
of a halophyte agamospermic species. Although it is listed in the IUCN red list of threatened species,
information on its population size or rarity, as well as its ecology, in some respects is still unknown. Field surveys
in the largest known population were performed (Raso cape, Portugal) in order to determine habitat requirements
and conservation status. A total of 88 quadrats were monitored, 43 of which contained at least one L. multiflorum
individual. For each sampled quadrat, four abiotic and four biotic variables as well as two spatially derived variables
were recorded. Principal component analysis and cluster analysis showed narrow habitat specificity for this species
which appeared to be intolerant to competition with invasive alien plants. We conclude that in situ conservation
in a local ‘hotspot’ of this rare and vulnerable species emerges as a priority in order to ensure that biodiversity is not los
Performance breakdown effects dissociate from error detection effects in typing
Mistakes in skilled performance are often observed to be slower than correct actions. This error slowing has been associated with cognitive control processes involved in performance monitoring and error detection. A limited literature on skilled actions, however, suggests that preerror actions may also be slower than accurate actions. This contrasts with findings from unskilled, discrete trial tasks, where preerror performance is usually faster than accurate performance. We tested 3 predictions about error-related behavioural changes in continuous typing performance. We asked participants to type 100 sentences without visual feedback. We found that (a) performance before errors was no different in speed than that before correct key-presses, (b) error and posterror key-presses were slower than matched correct key-presses, and (c) errors were preceded by greater variability in speed than were matched correct key-presses. Our results suggest that errors are preceded by a behavioural signature, which may indicate breakdown of fluid cognition, and that the effects of error detection on performance (error and posterror slowing) can be dissociated from breakdown effects (preerror increase in variability). © 2013 © 2013 The Experimental Psychology Society
Characterization of two relacidines belonging to a novel class of circular lipopeptides that act against Gram-negative bacterial pathogens
The development of sustainable agriculture and the increasing antibiotic resistance of human pathogens call for novel antimicrobial compounds. Here, we describe the extraction and characterization of a class of cationic circular lipopeptides, for which we propose the name relacidines, from the soil bacterium Brevibacillus laterosporus MG64. Relacidines are composed of a fatty acid side chain (4-methylhexanoic acid) and 13 amino acid residues. A lactone ring is formed by the last five amino acid residues and three positively charged ornithines are located in the linear fragment. Relacidines selectively combat Gram-negative pathogens, including phytopathogens and human pathogens. Further investigation of the mode of action revealed that relacidine B binds to the lipopolysaccharides but does not form pores in the cell membrane. We also provide proof to show that relacidine B does not affect the biosynthesis of the cell wall and RNA. Instead, it affects the oxidative phosphorylation process of cells and diminishes the biosynthesis of ATP. Transcription of relacidines is induced by plant pathogens, which strengthens the potential of B. laterosporus MG64 to be used as a biocontrol agent. Thus, we identified a new group of potent antibiotic compounds for combating Gram-negative pathogens of plants or animals
Staphylococcus aureus Survives with a Minimal Peptidoglycan Synthesis Machine but Sacrifices Virulence and Antibiotic Resistance
Many important cellular processes are performed by molecular machines, composed of multiple proteins that physically interact to execute biological functions. An example is the bacterial peptidoglycan (PG) synthesis machine, responsible for the synthesis of the main component of the cell wall and the target of many contemporary antibiotics. One approach for the identification of essential components of a cellular machine involves the determination of its minimal protein composition. Staphylococcus aureus is a Gram-positive pathogen, renowned for its resistance to many commonly used antibiotics and prevalence in hospitals. Its genome encodes a low number of proteins with PG synthesis activity (9 proteins), when compared to other model organisms, and is therefore a good model for the study of a minimal PG synthesis machine. We deleted seven of the nine genes encoding PG synthesis enzymes from the S. aureus genome without affecting normal growth or cell morphology, generating a strain capable of PG biosynthesis catalyzed only by two penicillin-binding proteins, PBP1 and the bi-functional PBP2. However, multiple PBPs are important in clinically relevant environments, as bacteria with a minimal PG synthesis machinery became highly susceptible to cell wall-targeting antibiotics, host lytic enzymes and displayed impaired virulence in a Drosophila infection model which is dependent on the presence of specific peptidoglycan receptor proteins, namely PGRP-SA. The fact that S. aureus can grow and divide with only two active PG synthesizing enzymes shows that most of these enzymes are redundant in vitro and identifies the minimal PG synthesis machinery of S. aureus. However a complex molecular machine is important in environments other than in vitro growth as the expendable PG synthesis enzymes play an important role in the pathogenicity and antibiotic resistance of S. aureus
- …
