93 research outputs found

    Association of Ficolin-2 serum levels and FCN2 genetic variants with Indian Visceral Leishmaniasis

    Get PDF
    Background: Visceral leishmaniasis (VL), one of the neglected tropical diseases, is endemic in the Indian subcontinent. Ficolins are circulating serum proteins of the lectin complement system and involved in innate immunity. Methods: We have estimated ficolin-2 serum levels and analyzed the functional variants of the encoding gene FCN2 in 218 cases of VL and in 225 controls from an endemic region of India. Results: Elevated levels of serum ficolin-2 were observed in VL cases compared to the controls (adjusted P<0.0001). The genetic analysis revealed that the FCN2 structural variant +6359 C>T (p.T236M) was associated with VL (OR=2.2, 95% CI = 1.23-7.25, P = 0.008) and with high ficolin-2 serum levels. We also found that the FCN2*AAAC haplotype occurred more frequently among healthy controls when compared to cases (OR = 0.59, 95% CI = 0.37-0.94, P = 0.023). Conclusions: Our findings indicate that the FCN2 variant +6359C>T is associated with the occurrence of VL and that ficolin-2 serum levels are elevated in Leishmania infections

    Wetlands for wastewater treatment and subsequent recycling of treated effluent : a review

    Get PDF
    Due to water scarcity challenges around the world, it is essential to think about non-conventional water resources to address the increased demand in clean freshwater. Environmental and public health problems may result from insufficient provision of sanitation and wastewater disposal facilities. Because of this, wastewater treatment and recycling methods will be vital to provide sufficient freshwater in the coming decades, since water resources are limited and more than 70% of water are consumed for irrigation purposes. Therefore, the application of treated wastewater for agricultural irrigation has much potential, especially when incorporating the reuse of nutrients like nitrogen and phosphorous, which are essential for plant production. Among the current treatment technologies applied in urban wastewater reuse for irrigation, wetlands were concluded to be the one of the most suitable ones in terms of pollutant removal and have advantages due to both low maintenance costs and required energy. Wetland behavior and efficiency concerning wastewater treatment is mainly linked to macrophyte composition, substrate, hydrology, surface loading rate, influent feeding mode, microorganism availability, and temperature. Constructed wetlands are very effective in removing organics and suspended solids, whereas the removal of nitrogen is relatively low, but could be improved by using a combination of various types of constructed wetlands meeting the irrigation reuse standards. The removal of phosphorus is usually low, unless special media with high sorption capacity are used. Pathogen removal from wetland effluent to meet irrigation reuse standards is a challenge unless supplementary lagoons or hybrid wetland systems are used

    MBL2 variations and malaria susceptibility in Indian populations

    Get PDF
    Human Mannose-binding Lectin (MBL) encoded by the MBL2 gene is a pattern recognition protein and has been associated with many infectious diseases, including malaria. We sought to investigate the contribution of functional MBL2 gene variations to Plasmodium falciparum malaria in well-defined cases and in matched controls. We resequenced the 8.7 kb of the entire MBL2 gene in 434 individuals clinically classified with malaria from regions of India where malaria is endemic. The study cohort included 176 patients with severe malaria, 101 patients with mild malaria, and 157 ethnically matched asymptomatic individuals. In addition, 830 individuals from 32 socially, linguistically, and geographically diverse endogamous populations of India were investigated for the distribution of functional MBL2 variants. The MBL2 −221C (X) allelic variant is associated with increased risk of malaria (mild malaria odds ratio [OR] = 1.9, corrected P value [PCorr] = 0.0036; severe malaria OR = 1.6, PCorr = 0.02). The exon1 variants MBL2*B (severe malaria OR = 2.1, PCorr = 0.036; mild versus severe malaria OR = 2.5, PCorr = 0.039) and MBL2*C (mild versus severe malaria OR = 5.4, PCorr = 0.045) increased the odds of having malaria. The exon1 MBL2*D/*B/*C variant increased the risk for severe malaria (OR = 3.4, PCorr = 0.000045). The frequencies of low MBL haplotypes were significantly higher in severe malaria (14.2%) compared to mild malaria (7.9%) and asymptomatic (3.8%). The MBL2*LYPA haplotypes confer protection, whereas MBL2*LXPA increases the malaria risk. Our findings in Indian populations demonstrate that MBL2 functional variants are strongly associated with malaria and infection severity

    Hypertrophic Stimulation Increases β-actin Dynamics in Adult Feline Cardiomyocytes

    Get PDF
    The myocardium responds to hemodynamic stress through cellular growth and organ hypertrophy. The impact of cytoskeletal elements on this process, however, is not fully understood. While α-actin in cardiomyocytes governs muscle contraction in combination with the myosin motor, the exact role of β-actin has not been established. We hypothesized that in adult cardiomyocytes, as in non-myocytes, β-actin can facilitate cytoskeletal rearrangement within cytoskeletal structures such as Z-discs. Using a feline right ventricular pressure overload (RVPO) model, we measured the level and distribution of β-actin in normal and pressure overloaded myocardium. Resulting data demonstrated enriched levels of β-actin and enhanced translocation to the Triton-insoluble cytoskeletal and membrane skeletal complexes. In addition, RVPO in vivo and in vitro hypertrophic stimulation with endothelin (ET) or insulin in isolated adult cardiomyocytes enhanced the content of polymerized fraction (F-actin) of β-actin. To determine the localization and dynamics of β-actin, we adenovirally expressed GFP-tagged β-actin in isolated adult cardiomyocytes. The ectopically expressed β-actin-GFP localized to the Z-discs, costameres, and cell termini. Fluorescence recovery after photobleaching (FRAP) measurements of β-actin dynamics revealed that β-actin at the Z-discs is constantly being exchanged with β-actin from cytoplasmic pools and that this exchange is faster upon hypertrophic stimulation with ET or insulin. In addition, in electrically stimulated isolated adult cardiomyocytes, while β-actin overexpression improved cardiomyocyte contractility, immunoneutralization of β-actin resulted in a reduced contractility suggesting that β-actin could be important for the contractile function of adult cardiomyocytes. These studies demonstrate the presence and dynamics of β-actin in the adult cardiomyocyte and reinforce its usefulness in measuring cardiac cytoskeletal rearrangement during hypertrophic stimulation

    Phytoremediation using Aquatic Plants

    Get PDF

    Abstract 316: A Potential Mechanism Involving mTOR For The Expression Of CTGF In Agonist-stimulated Adult Cardiomyocytes

    No full text
    Cardiac hypertrophy ensues as a response to multiple stimuli, such as mechanical stress, neurohumoral activation, growth factors and cytokines. Connective Tissue Growth Factor (CTGF), a potent fibrogenic cytokine, regulates a wide range of biological functions including ECM deposition, wound repair, angiogenesis, migration, differentiation, survival and proliferation. While CTGF overexpression in fibroblasts has been shown to be responsible for fibrosis in various organs, controversy exists about the source of CTGF. Since interstitial fibrosis contributes to ventricular wall stiffness and impairs diastolic function, understating how key factors such as CTGF are expressed and released for the genesis of fibrosis in the hypertrophying heart is important to develop new treatment options. To this end, we explored the signaling pathway(s) involved in the phenylephrine (PE), a hypertrophic agonist, induced expression of CTGF by cardiomyocytes (CMs). Since mammalian target of rapamycin (mTOR) is reported to regulate PE-induced hypertrophic signaling, we hypothesize that mTOR plays a role in PE induced CTGF expression in CMs. To test if CMs produce CTGF, we treated adult feline CMs with phenylephrine. PE stimulated CTGF mRNA expression in a dose and time dependent manner. mTOR forms two distinct complexes, mTORC1 and mTORC2. Whereas both complexes are sensitive to a pharmacological inhibitor Torin1, only mTORC1 is sensitive to Rapamycin inhibition. Our results indicate that PE stimulated CTGF expression could be substantially enhanced by torin1 pretreatment of CMs. Moreover, shRNA mediated silencing of Rictor in CMs, one of the components of mTORC2, significantly augmented the PE induced CTGF mRNA expression. But mTORC1 inhibition using Rapamycin or activation of its downstream target S6K1 using Rapamycin resistant S6K1 adenovirus had no impact in PE -stimulated CTGF expression. The same trend was also observed in the level of secreted CTGF. In conclusion, these results strongly indicate that mTORC2 plays a repressive role in CTGF mRNA expression in adult CMs, and that the loss of such repression in PO myocardium might be a potential mechanism for the onset of cardiac fibrosis in hypertrophying myocardium.</jats:p

    Polymer-supported NiWO4 nanocomposites for visible light degradation of toxic dyes

    Full text link
    corecore