6,979 research outputs found
Efficient solutions of self-consistent mean field equations for dewetting and electrostatics in nonuniform liquids
We use a new configuration-based version of linear response theory to
efficiently solve self-consistent mean field equations relating an effective
single particle potential to the induced density. The versatility and accuracy
of the method is illustrated by applications to dewetting of a hard sphere
solute in a Lennard-Jones fluid, the interplay between local hydrogen bond
structure and electrostatics for water confined between two hydrophobic walls,
and to ion pairing in ionic solutions. Simulation time has been reduced by more
than an order of magnitude over previous methods.Comment: Supplementary material included at end of main pape
plink: An R Package for Linking Mixed-Format Tests Using IRT-Based Methods
The R package plink has been developed to facilitate the linking of mixed-format tests for multiple groups under a common item design using unidimensional and multidimensional IRT-based methods. This paper presents the capabilities of the package in the context of the unidimensional methods. The package supports nine unidimensional item response models (the Rasch model, 1PL, 2PL, 3PL, graded response model, partial credit and generalized partial credit model, nominal response model, and multiple-choice model) and four separate calibration linking methods (mean/sigma, mean/mean, Haebara, and Stocking-Lord). It also includes functions for importing item and/or ability parameters from common IRT software, conducting IRT true-score and observed-score equating, and plotting item response curves and parameter comparison plots.
Ice storm effects on the canopy structure of a northern hardwood forest after 8 years
Ice storms can cause severe damage to forest canopies, resulting in differential mortality among tree species and size classes and leading to long-lasting changes in the vertical structure and composition of the forest. An intense ice storm in 1998 damaged large areas of the northern hardwood forest, including much of the Hubbard Brook Experimental Forest, New Hampshire (USA). Following up on detailed poststorm assessments, we measured changes in the vertical structure of the forest canopy 8 years poststorm. We focused on how the presence of disease-induced advance regeneration of American beech (Fagus grandifolia Ehrh.) has affected canopy structure in the recovering forest. We measured foliage-height profiles using a point-quadrat approach and a pole-mounted leaf area index (LAI) sensor. Although the total LAIs of damaged and undamaged areas were similar, areas damaged in 1998 showed an increased proportion of total leaf area between 6 and 10 m above the ground. The foliage at this height is largely (54%) beech. To the extent that this heavily beech-dominated understory layer suppresses regeneration of other species, these findings suggest that rare disturbances of mature northern hardwood forests affected by beech bark disease will increase the importance of damage-prone and economically marginal beech
Density fluctuations and the structure of a nonuniform hard sphere fluid
We derive an exact equation for density changes induced by a general external
field that corrects the hydrostatic approximation where the local value of the
field is adsorbed into a modified chemical potential. Using linear response
theory to relate density changes self-consistently in different regions of
space, we arrive at an integral equation for a hard sphere fluid that is exact
in the limit of a slowly varying field or at low density and reduces to the
accurate Percus-Yevick equation for a hard core field. This and related
equations give accurate results for a wide variety of fields
Investigation of the D and E region during the IQSY Final report, 1964 - 1965
Nike-Apache rocket measurements of lower ionosphere during International Quiet Sun Yea
A new approach for efficient simulation of Coulomb interactions in ionic fluids
We propose a simplified version of local molecular field (LMF) theory to
treat Coulomb interactions in simulations of ionic fluids. LMF theory relies on
splitting the Coulomb potential into a short-ranged part that combines with
other short-ranged core interactions and is simulated explicitly. The averaged
effects of the remaining long-ranged part are taken into account through a
self-consistently determined effective external field. The theory contains an
adjustable length parameter sigma that specifies the cut-off distance for the
short-ranged interaction. This can be chosen to minimize the errors resulting
from the mean-field treatment of the complementary long-ranged part. Here we
suggest that in many cases an accurate approximation to the effective field can
be obtained directly from the equilibrium charge density given by the Debye
theory of screening, thus eliminating the need for a self-consistent treatment.
In the limit sigma -> 0, this assumption reduces to the classical Debye
approximation. We examine the numerical performance of this approximation for a
simple model of a symmetric ionic mixture. Our results for thermodynamic and
structural properties of uniform ionic mixtures agree well with similar results
of Ewald simulations of the full ionic system. In addition we have used the
simplified theory in a grand-canonical simulation of a nonuniform ionic mixture
where an ion has been fixed at the origin. Simulations using short-ranged
truncations of the Coulomb interactions alone do not satisfy the exact
condition of complete screening of the fixed ion, but this condition is
recovered when the effective field is taken into account. We argue that this
simplified approach can also be used in the simulations of more complex
nonuniform systems.Comment: To be published in Journal of Chemical Physic
Vacuum Energy Density for Massless Scalar Fields in Flat Homogeneous Spacetime Manifolds with Nontrivial Topology
Although the observed universe appears to be geometrically flat, it could
have one of 18 global topologies. A constant-time slice of the spacetime
manifold could be a torus, Mobius strip, Klein bottle, or others. This global
topology of the universe imposes boundary conditions on quantum fields and
affects the vacuum energy density via Casimir effect. In a spacetime with such
a nontrivial topology, the vacuum energy density is shifted from its value in a
simply-connected spacetime. In this paper, the vacuum expectation value of the
stress-energy tensor for a massless scalar field is calculated in all 17
multiply-connected, flat and homogeneous spacetimes with different global
topologies. It is found that the vacuum energy density is lowered relative to
the Minkowski vacuum level in all spacetimes and that the stress-energy tensor
becomes position-dependent in spacetimes that involve reflections and
rotations.Comment: 25 pages, 11 figure
Exact Solution of a Jamming Transition: Closed Equations for a Bootstrap Percolation Problem
Jamming, or dynamical arrest, is a transition at which many particles stop
moving in a collective manner. In nature it is brought about by, for example,
increasing the packing density, changing the interactions between particles, or
otherwise restricting the local motion of the elements of the system. The onset
of collectivity occurs because, when one particle is blocked, it may lead to
the blocking of a neighbor. That particle may then block one of its neighbors,
these effects propagating across some typical domain of size named the
dynamical correlation length. When this length diverges, the system becomes
immobile. Even where it is finite but large the dynamics is dramatically
slowed. Such phenomena lead to glasses, gels, and other very long-lived
nonequilibrium solids. The bootstrap percolation models are the simplest
examples describing these spatio-temporal correlations. We have been able to
solve one such model in two dimensions exactly, exhibiting the precise
evolution of the jamming correlations on approach to arrest. We believe that
the nature of these correlations and the method we devise to solve the problem
are quite general. Both should be of considerable help in further developing
this field.Comment: 17 pages, 4 figure
The pair annihilation reaction D + D --> 0 in disordered media and conformal invariance
The raise and peel model describes the stochastic model of a fluctuating
interface separating a substrate covered with clusters of matter of different
sizes, and a rarefied gas of tiles. The stationary state is obtained when
adsorption compensates the desorption of tiles. This model is generalized to an
interface with defects (D). The defects are either adjacent or separated by a
cluster. If a tile hits the end of a cluster with a defect nearby, the defect
hops at the other end of the cluster changing its shape. If a tile hits two
adjacent defects, the defect annihilate and are replaced by a small cluster.
There are no defects in the stationary state.
This model can be seen as describing the reaction D + D -->0, in which the
particles (defects) D hop at long distances changing the medium and annihilate.
Between the hops the medium also changes (tiles hit clusters changing their
shapes). Several properties of this model are presented and some exact results
are obtained using the connection of our model with a conformal invariant
quantum chain.Comment: 8 pages, 12figure
- …
