1,069 research outputs found

    B-meson decay constants: a more complete picture from full lattice QCD

    Get PDF
    We extend the picture of BB-meson decay constants obtained in lattice QCD beyond those of the BB, BsB_s and BcB_c to give the first full lattice QCD results for the BB^*, BsB^*_s and BcB^*_c. We use improved NonRelativistic QCD for the valence bb quark and the Highly Improved Staggered Quark (HISQ) action for the lighter quarks on gluon field configurations that include the effect of u/du/d, ss and cc quarks in the sea with u/du/d quark masses going down to physical values. For the ratio of vector to pseudoscalar decay constants, we find fB/fBf_{B^*}/f_B = 0.941(26), fBs/fBsf_{B^*_s}/f_{B_s} = 0.953(23) (both 2σ2\sigma less than 1.0) and fBc/fBcf_{B^*_c}/f_{B_c} = 0.988(27). Taking correlated uncertainties into account we see clear indications that the ratio increases as the mass of the lighter quark increases. We compare our results to those using the HISQ formalism for all quarks and find good agreement both on decay constant values when the heaviest quark is a bb and on the dependence on the mass of the heaviest quark in the region of the bb. Finally, we give an overview plot of decay constants for gold-plated mesons, the most complete picture of these hadronic parameters to date.Comment: 20 pages, 9 figures. Minor updates to the discussion in several places and some additional reference

    Are patterns of fine-scale spatial genetic structure consistent between sites within tropical tree species?

    Get PDF
    JRS was funded by the Swiss National Science Foundation (SNF) (http://www.snf.ch/en/Pages/default.aspx) grant number PDFMP3_132479 / 1 awarded to JG. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    Molecular orbital calculations of two-electron states for P donor solid-state spin qubits

    Get PDF
    We theoretically study the Hilbert space structure of two neighbouring P donor electrons in silicon-based quantum computer architectures. To use electron spins as qubits, a crucial condition is the isolation of the electron spins from their environment, including the electronic orbital degrees of freedom. We provide detailed electronic structure calculations of both the single donor electron wave function and the two-electron pair wave function. We adopted a molecular orbital method for the two-electron problem, forming a basis with the calculated single donor electron orbitals. Our two-electron basis contains many singlet and triplet orbital excited states, in addition to the two simple ground state singlet and triplet orbitals usually used in the Heitler-London approximation to describe the two-electron donor pair wave function. We determined the excitation spectrum of the two-donor system, and study its dependence on strain, lattice position and inter donor separation. This allows us to determine how isolated the ground state singlet and triplet orbitals are from the rest of the excited state Hilbert space. In addition to calculating the energy spectrum, we are also able to evaluate the exchange coupling between the two donor electrons, and the double occupancy probability that both electrons will reside on the same P donor. These two quantities are very important for logical operations in solid-state quantum computing devices, as a large exchange coupling achieves faster gating times, whilst the magnitude of the double occupancy probability can affect the error rate.Comment: 15 pages (2-column

    Research Proposal for an Experiment to Search for the Decay {\mu} -> eee

    Full text link
    We propose an experiment (Mu3e) to search for the lepton flavour violating decay mu+ -> e+e-e+. We aim for an ultimate sensitivity of one in 10^16 mu-decays, four orders of magnitude better than previous searches. This sensitivity is made possible by exploiting modern silicon pixel detectors providing high spatial resolution and hodoscopes using scintillating fibres and tiles providing precise timing information at high particle rates.Comment: Research proposal submitted to the Paul Scherrer Institute Research Committee for Particle Physics at the Ring Cyclotron, 104 page

    Thermal susceptibility of the Planck-LFI receivers

    Get PDF
    This paper is part of the Prelaunch status LFI papers published on JINST: http://www.iop.org/EJ/journal/-page=extra.proc5/jinst . This paper describes the impact of the Planck Low Frequency Instrument front end physical temperature fluctuations on the output signal. The origin of thermal instabilities in the instrument are discussed, and an analytical model of their propagation and impact on the receivers signal is described. The experimental test setup dedicated to evaluate these effects during the instrument ground calibration is reported together with data analysis methods. Finally, main results obtained are discussed and compared to the requirements.Comment: This is an author-created, un-copyedited version of an article accepted for publication in Journal of Instrumentation. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The definitive publisher authenticated version is available online at 10.1088/1748-0221/4/12/T1201

    Advanced modelling of the Planck-LFI radiometers

    Get PDF
    The Low Frequency Instrument (LFI) is a radiometer array covering the 30-70 GHz spectral range on-board the ESA Planck satellite, launched on May 14th, 2009 to observe the cosmic microwave background (CMB) with unprecedented precision. In this paper we describe the development and validation of a software model of the LFI pseudo-correlation receivers which enables to reproduce and predict all the main system parameters of interest as measured at each of the 44 LFI detectors. These include system total gain, noise temperature, band-pass response, non-linear response. The LFI Advanced RF Model (LARFM) has been constructed by using commercial software tools and data of each radiometer component as measured at single unit level. The LARFM has been successfully used to reproduce the LFI behavior observed during the LFI ground-test campaign. The model is an essential element in the database of LFI data processing center and will be available for any detailed study of radiometer behaviour during the survey.Comment: 21 pages, 15 figures, this paper is part of the Prelaunch status LFI papers published on JINST: http://www.iop.org/EJ/journal/-page=extra.proc5/jins

    Planck pre-launch status: calibration of the Low Frequency Instrument flight model radiometers

    Get PDF
    The Low Frequency Instrument (LFI) on-board the ESA Planck satellite carries eleven radiometer subsystems, called Radiometer Chain Assemblies (RCAs), each composed of a pair of pseudo-correlation receivers. We describe the on-ground calibration campaign performed to qualify the flight model RCAs and to measure their pre-launch performances. Each RCA was calibrated in a dedicated flight-like cryogenic environment with the radiometer front-end cooled to 20K and the back-end at 300K, and with an external input load cooled to 4K. A matched load simulating a blackbody at different temperatures was placed in front of the sky horn to derive basic radiometer properties such as noise temperature, gain, and noise performance, e.g. 1/f noise. The spectral response of each detector was measured as was their susceptibility to thermal variation. All eleven LFI RCAs were calibrated. Instrumental parameters measured in these tests, such as noise temperature, bandwidth, radiometer isolation, and linearity, provide essential inputs to the Planck-LFI data analysis.Comment: 15 pages, 18 figures. Accepted for publication in Astronomy and Astrophysic

    Genetic diversity affects seedling survival but not growth or seed germination in the Bornean endemic dipterocarp Parashorea tomentella

    Get PDF
    Background: Logging and habitat fragmentation of tropical rain forests may disrupt patterns of gene flow and genetic diversity. Consequently, inbreeding in tree populations may reduce fitness and increase extinction risks, especially among species that are predominantly outcrossing, dependent on biotic pollination and/or display limited seed dispersal such as species of the Dipterocarpaceae. Aims: To test the hypothesis that heterozygosity of individual progeny affects their likelihood of germination and the growth and survival of seedlings. Methods: Standardised measure of multilocus heterozygosity (sMLH) was estimated from seven microsatellite loci for individual progeny collected from 18 mother trees of the large dipterocarp Parashorea tomentella. The relationships among sMLH, germination and seedling growth and survival were determined for the progeny. Results: Seedling survival over 18 months increased with greater sMLH and fresh fruit weight. This result was expressed under all experimentally controlled combinations of light and nutrient availability in the nursery and in the shaded understorey of primary forest where survival overall was much lower than in the nursery. sMLH did not affect the probability of germination or seedling growth rate in any experimental treatment. Conclusions: These results provide evidence that reduced heterozygosity is associated with reduced seedling survival in a tropical forest tree species

    Test of CPT Symmetry and Quantum Mechanics with Experimental data from CPLEAR

    Full text link
    We use fits to recent published CPLEAR data on neutral kaon decays to π+π\pi^+\pi^- and πeν\pi e\nu to constrain the CPT--violation parameters appearing in a formulation of the neutral kaon system as an open quantum-mechanical system. The obtained upper limits of the CPT--violation parameters are approaching the range suggested by certain ideas concerning quantum gravity.Comment: 9 pages of uuencoded postscript (includes 3 figures
    corecore