62 research outputs found

    Monte Carlo simulation of boson lattices

    Full text link
    Boson lattices are theoretically well described by the Hubbard model. The basic model and its variants can be effectively simulated using Monte Carlo techniques. We describe two newly developed approaches, the Stochastic Series Expansion (SSE) with directed loop updates and continuous--time Diffusion Monte Carlo (CTDMC). SSE is a formulation of the finite temperature partition function as a stochastic sampling over product terms. Directed loops is a general framework to implement this stochastic sampling in a non--local fashion while maintaining detailed balance. CTDMC is well suited to finding exact ground--state properties, applicable to any lattice model not suffering from the sign problem; for a lattice model the evolution of the wave function can be performed in continuous time without any time discretization error. Both the directed loop algorithm and the CTDMC are important recent advances in development of computational methods. Here we present results for a Hubbard model for anti--ferromagnetic spin--1 bosons in one dimensions, and show evidence for a dimerized ground state in the lowest Mott lobe.Comment: 3 pages, 5 figur

    Layer- and bulk roton excitations of 4He in porous media

    Full text link
    We examine the energetics of bulk and layer-roton excitations of 4He in various porous medial such as aerogel, Geltech, or Vycor, in order to find out what conclusions can be drawn from experiments on the energetics about the physisorption mechanism. The energy of the layer-roton minimum depends sensitively on the substrate strength, thus providing a mechanism for a direct measurement of this quantity. On the other hand, bulk-like roton excitations are largely independent of the interaction between the medium and the helium atoms, but the dependence of their energy on the degree of filling reflects the internal structure of the matrix and can reveal features of 4He at negative pressures. While bulk-like rotons are very similar to their true bulk counterparts, the layer modes are not in close relation to two-dimensional rotons and should be regarded as a third, completely independent kind of excitation

    Excitations in confined helium

    Full text link
    We design models for helium in matrices like aerogel, Vycor or Geltech from a manifestly microscopic point of view. For that purpose, we calculate the dynamic structure function of 4He on Si substrates and between two Si walls as a function of energy, momentum transfer, and the scattering angle. The angle--averaged results are in good agreement with the neutron scattering data; the remaining differences can be attributed to the simplified model used here for the complex pore structure of the materials. A focus of the present work is the detailed identification of coexisting layer modes and bulk--like excitations, and, in the case of thick films, ripplon excitations. Involving essentially two--dimensional motion of atoms, the layer modes are sensitive to the scattering angle.Comment: Phys. Rev. B (2003, in press

    Many-body aspects of positron annihilation in the electron gas

    Full text link
    We investigate positron annihilation in electron liquid as a case study for many-body theory, in particular the optimized Fermi Hypernetted Chain (FHNC-EL) method. We examine several approximation schemes and show that one has to go up to the most sophisticated implementation of the theory available at the moment in order to get annihilation rates that agree reasonably well with experimental data. Even though there is basically just one number to look at, the electron-positron pair distribution function at zero distance, it is exactly this number that dictates how the full pair distribution behaves: In most cases, it falls off monotonously towards unity as the distance increases. Cases where the electron-positron pair distribution exhibits a dip are precursors to the formation of bound electron--positron pairs. The formation of electron-positron pairs is indicated by a divergence of the FHNC-EL equations, from this we can estimate the density regime where positrons must be localized. This occurs in our calculations in the range 9.4 <= r_s <=10, where r_s is the dimensionless density parameter of the electron liquid.Comment: To appear in Phys. Rev. B (2003

    Thin helium film on a glass substrate

    Full text link
    We investigate by Monte Carlo simulations the structure, energetics and superfluid properties of thin helium-four films (up to four layers) on a glass substrate, at low temperature. The first adsorbed layer is found to be solid and "inert", i.e., atoms are localized and do not participate to quantum exchanges. Additional layers are liquid, with no clear layer separation above the second one. It is found that a single helium-three impurity resides on the outmost layer, not significantly further away from the substrate than helium-four atoms on the same layer.Comment: Six figures, submitted for publication to the Journal of Low Temperature Physic

    Quasicondensate and superfluid fraction in the 2D charged-boson gas at finite temperature

    Full text link
    The Bogoliubov - de Gennes equations are solved for the Coulomb Bose gas describing a fluid of charged bosons at finite temperature. The approach is applicable in the weak coupling regime and the extent of its quantitative usefulness is tested in the three-dimensional fluid, for which diffusion Monte Carlo data are available on the condensate fraction at zero temperature. The one-body density matrix is then evaluated by the same approach for the two-dimensional fluid with e^2/r interactions, to demonstrate the presence of a quasi-condensate from its power-law decay with increasing distance and to evaluate the superfluid fraction as a function of temperature at weak coupling.Comment: 9 pages, 2 figure

    Relativistic quantum effects of Dirac particles simulated by ultracold atoms

    Full text link
    Quantum simulation is a powerful tool to study a variety of problems in physics, ranging from high-energy physics to condensed-matter physics. In this article, we review the recent theoretical and experimental progress in quantum simulation of Dirac equation with tunable parameters by using ultracold neutral atoms trapped in optical lattices or subject to light-induced synthetic gauge fields. The effective theories for the quasiparticles become relativistic under certain conditions in these systems, making them ideal platforms for studying the exotic relativistic effects. We focus on the realization of one, two, and three dimensional Dirac equations as well as the detection of some relativistic effects, including particularly the well-known Zitterbewegung effect and Klein tunneling. The realization of quantum anomalous Hall effects is also briefly discussed.Comment: 22 pages, review article in Frontiers of Physics: Proceedings on Quantum Dynamics of Ultracold Atom

    To wet or not to wet: that is the question

    Full text link
    Wetting transitions have been predicted and observed to occur for various combinations of fluids and surfaces. This paper describes the origin of such transitions, for liquid films on solid surfaces, in terms of the gas-surface interaction potentials V(r), which depend on the specific adsorption system. The transitions of light inert gases and H2 molecules on alkali metal surfaces have been explored extensively and are relatively well understood in terms of the least attractive adsorption interactions in nature. Much less thoroughly investigated are wetting transitions of Hg, water, heavy inert gases and other molecular films. The basic idea is that nonwetting occurs, for energetic reasons, if the adsorption potential's well-depth D is smaller than, or comparable to, the well-depth of the adsorbate-adsorbate mutual interaction. At the wetting temperature, Tw, the transition to wetting occurs, for entropic reasons, when the liquid's surface tension is sufficiently small that the free energy cost in forming a thick film is sufficiently compensated by the fluid- surface interaction energy. Guidelines useful for exploring wetting transitions of other systems are analyzed, in terms of generic criteria involving the "simple model", which yields results in terms of gas-surface interaction parameters and thermodynamic properties of the bulk adsorbate.Comment: Article accepted for publication in J. Low Temp. Phy

    Liquid 4He: contributions to first principles theory of quantized vortices, thermohydrodynamic properties, and the lambda transition

    Full text link
    Liquid 4He has been studied extensively for almost a century, but there are still a number of outstanding weak or missing links in our comprehension of it. This paper reviews some of the principal paths taken in previous research and then proceeds to fill gaps and create an integrated picture with more complete understanding through first principles treatment of a realistic model that starts with a microscopic, atomistic description of the liquid. Newly derived results for vortex cores and thermohydrodynamic properties for a two-fluid model are used to show that interacting quantized vortices may produce a lambda anomaly in specific heat near the superfluid transition where flow properties change. The nature of the order in the superfluid state is explained. Experimental support for new calculations is exhibited, and a unique specific heat experiment is proposed to test predictions of the theory. Relevance of the theory to modern research in cosmology, astrophysics, and Bose-Einstein condensates is discussed.Comment: 155 pages, 28 figure

    Chaperones rescue the energetic landscape of mutant CFTR at single molecule and in cell

    Get PDF
    Molecular chaperones are pivotal in folding and degradation of the cellular proteome but their impact on the conformational dynamics of near-native membrane proteins with disease relevance remains unknown. Here we report the effect of chaperone activity on the functional conformation of the temperature-sensitive mutant cystic fibrosis channel (Delta F508-CFTR) at the plasma membrane and after reconstitution into phospholipid bilayer. Thermally induced unfolding at 37 degrees C and concomitant functional inactivation of Delta F508-CFTR are partially suppressed by constitutive activity of Hsc70 and Hsp90 chaperone/co-chaperone at the plasma membrane and post-endoplasmic reticulum compartments in vivo, and at singlemolecule level in vitro, indicated by kinetic and thermodynamic remodeling of the mutant gating energetics toward its wild-type counterpart. Thus, molecular chaperones can contribute to functional maintenance of Delta F508-CFTR by reshaping the conformational energetics of its final fold, a mechanism with implication in the regulation of metastable ABC transporters and other plasma membrane proteins activity in health and diseases
    corecore