6 research outputs found
Exact Fourier expansion in cylindrical coordinates for the three-dimensional Helmholtz Green function
A new method is presented for Fourier decomposition of the Helmholtz Green
Function in cylindrical coordinates, which is equivalent to obtaining the
solution of the Helmholtz equation for a general ring source. The Fourier
coefficients of the Helmholtz Green function are split into their half
advanced+half retarded and half advanced-half retarded components. Closed form
solutions are given for these components in terms of a Horn function and a
Kampe de Feriet function, respectively. The systems of partial differential
equations associated with these two-dimensional hypergeometric functions are
used to construct a fourth-order ordinary differential equation which both
components satisfy. A second fourth-order ordinary differential equation for
the general Fourier coefficent is derived from an integral representation of
the coefficient, and both differential equations are shown to be equivalent.
Series solutions for the various Fourier coefficients are also given, mostly in
terms of Legendre functions and Bessel/Hankel functions. These are derived from
the closed form hypergeometric solutions or an integral representation, or
both. Numerical calculations comparing different methods of calculating the
Fourier coefficients are presented
Annular nanoantenna on Fibre micro-axicon
International audienceIn this paper, we propose to extend the concept of loop antenna to the optical domain. The aim is to develop a new generation of optical nanocollectors that are sensitive to specific electric or magnetic vectorial field components. For validating our approach, a preliminary one-micron-diameter gold nanoring is micromachined on the apex of a cone lens obtained from a tapered optical fibre. It is shown that such a nano-object behaves as a nano-antenna able to detect the longitudinal electric field from a Bessel beam in radial polarization and the longitudinal magnetic component from a Bessel beam in azimuthal polarization. In the latter case, the annular nano-antenna exhibits the properties of an optical inductance
