501 research outputs found

    Effective Lagrangian for strongly coupled domain wall fermions

    Get PDF
    We derive the effective Lagrangian for mesons in lattice gauge theory with domain-wall fermions in the strong-coupling and large-N_c limits. We use the formalism of supergroups to deal with the Pauli-Villars fields, needed to regulate the contributions of the heavy fermions. We calculate the spectrum of pseudo-Goldstone bosons and show that domain wall fermions are doubled and massive in this regime. Since we take the extent and lattice spacing of the fifth dimension to infinity and zero respectively, our conclusions apply also to overlap fermions.Comment: 26 pp. RevTeX and 3 figures; corrected error in symmetry breaking scheme and added comments to discussio

    Fermion-scalar interactions with domain wall fermions

    Get PDF
    Domain wall fermions are defined on a lattice with an extra direction the size of which controls the chiral properties of the theory. When gauge fields are coupled to domain wall fermions the extra direction is treated as an internal flavor space. Here it is found that this is not the case for scalar fields. Instead, the interaction takes place only along the link that connects the boundaries of the extra direction. This reveals a richness in the way different spin particles are coupled to domain wall fermions. As an application, 4-Fermi models are studied using large N techniques and the results are supported by numerical simulations with N=2. It is found that the chiral properties of domain wall fermions in these models are good across a large range of couplings and that a phase with parity-flavor broken symmetry can develop for negative bare masses if the number of sites along the extra direction is finite.Comment: LaTeX, 17 pages, 8 eps figures; comment regarding the width of Aoki phase added in sec. 3; references adde

    Two-Loop O(αsGFmt2){\cal O}(\alpha_sG_Fm_t^2) Corrections to the Fermionic Decay Rates of the Standard-Model Higgs Boson

    Full text link
    Low- and intermediate mass Higgs bosons decay preferably into fermion pairs. The one-loop electroweak corrections to the respective decay rates are dominated by a flavour-independent term of O(GFmt2){\cal O}(G_Fm_t^2). We calculate the two-loop gluon correction to this term. It turns out that this correction screens the leading high-mtm_t behaviour of the one-loop result by roughly 10\%. We also present the two-loop QCD correction to the contribution induced by a pair of fourth-generation quarks with arbitrary masses. As expected, the inclusion of the QCD correction considerably reduces the renormalization-scheme dependence of the prediction.Comment: 14 pages, latex, figures 2-5 appended, DESY 94-08

    Spontaneous Spin Polarized Currents in Superconductor-Ferromagnetic Metal Heterostructures

    Full text link
    We study a simple microscopic model for thin, ferromagnetic, metallic layers on semi-infinite bulk superconductor. We find that for certain values of the exchange spliting, on the ferromagnetic side, the ground states of such structures feature spontaneously induced spin polarized currents. Using a mean-field theory, which is selfconsistent with respect to the pairing amplitude χ\chi, spin polarization m\vec{m} and the spontaneous current js\vec{j}_s, we show that not only there are Andreev bound states in the ferromagnet but when their energies EnE_n are near zero they support spontaneous currents parallel to the ferromagnetic-superconducting interface. Moreover, we demonstrate that the spin-polarization of these currents depends sensitively on the band filling.Comment: 4 pages, 5 Postscript figures (included

    A toy model of open membrane field theory in constant 3-form flux

    Get PDF
    Based on an explicit computation of the scattering amplitude of four open membranes in a constant 3-form background, we construct a toy model of the field theory for open membranes in the large C field limit. It is a generalization of the noncommutative field theories which describe open strings in a constant 2-form flux. The noncommutativity due to the B-field background is now replaced by a nonassociative triplet product. The triplet product satisfies the consistency conditions of lattice 3d gravity, which is inherent in the world-volume theory of open membranes. We show the UV/IR mixing of the toy model by computing some Feynman diagrams. Inclusion of the internal degree of freedom is also possible through the idea of the cubic matrix.Comment: 31 pages, latex, 2 eps figure

    Tomography of pairing symmetry from magnetotunneling spectroscopy -- a case study for quasi-1D organic superconductors

    Full text link
    We propose that anisotropic pp-, dd-, or ff-wave pairing symmetries can be distinguished from a tunneling spectroscopy in the presence of magnetic fields, which is exemplified here for a model organic superconductor (TMTSF)2X{(TMTSF)}_{2}X. The shape of the Fermi surface (quasi-one-dimensional in this example) affects sensitively the pairing symmetry, which in turn affects the shape (U or V) of the gap along with the presence/absence of the zero-bias peak in the tunneling in a subtle manner. Yet, an application of a magnetic field enables us to identify the symmetry, which is interpreted as an effect of the Doppler shift in Andreev bound states.Comment: 4 papegs, 4 figure

    On The Mobile Behavior of Solid 4^4He at High Temperatures

    Full text link
    We report studies of solid helium contained inside a torsional oscillator, at temperatures between 1.07K and 1.87K. We grew single crystals inside the oscillator using commercially pure 4^4He and 3^3He-4^4He mixtures containing 100 ppm 3^3He. Crystals were grown at constant temperature and pressure on the melting curve. At the end of the growth, the crystals were disordered, following which they partially decoupled from the oscillator. The fraction of the decoupled He mass was temperature and velocity dependent. Around 1K, the decoupled mass fraction for crystals grown from the mixture reached a limiting value of around 35%. In the case of crystals grown using commercially pure 4^4He at temperatures below 1.3K, this fraction was much smaller. This difference could possibly be associated with the roughening transition at the solid-liquid interface.Comment: 15 pages, 6 figure

    Testing the Gaussian expansion method in exactly solvable matrix models

    Full text link
    The Gaussian expansion has been developed since early 80s as a powerful analytical method, which enables nonperturbative studies of various systems using `perturbative' calculations. Recently the method has been used to suggest that 4d space-time is generated dynamically in a matrix model formulation of superstring theory. Here we clarify the nature of the method by applying it to exactly solvable one-matrix models with various kinds of potential including the ones unbounded from below and of the double-well type. We also formulate a prescription to include a linear term in the Gaussian action in a way consistent with the loop expansion, and test it in some concrete examples. We discuss a case where we obtain two distinct plateaus in the parameter space of the Gaussian action, corresponding to different large-N solutions. This clarifies the situation encountered in the dynamical determination of the space-time dimensionality in the previous works.Comment: 30 pages, 15 figures, LaTeX; added references for section

    Theory and phenomenology of two-Higgs-doublet models

    Get PDF
    We discuss theoretical and phenomenological aspects of two-Higgs-doublet extensions of the Standard Model. In general, these extensions have scalar mediated flavour changing neutral currents which are strongly constrained by experiment. Various strategies are discussed to control these flavour changing scalar currents and their phenomenological consequences are analysed. In particular, scenarios with natural flavour conservation are investigated, including the so-called type I and type II models as well as lepton-specific and inert models. Type III models are then discussed, where scalar flavour changing neutral currents are present at tree level, but are suppressed by either specific ansatze for the Yukawa couplings or by the introduction of family symmetries. We also consider the phenomenology of charged scalars in these models. Next we turn to the role of symmetries in the scalar sector. We discuss the six symmetry-constrained scalar potentials and their extension into the fermion sector. The vacuum structure of the scalar potential is analysed, including a study of the vacuum stability conditions on the potential and its renormalization-group improvement. The stability of the tree level minimum of the scalar potential in connection with electric charge conservation and its behaviour under CP is analysed. The question of CP violation is addressed in detail, including the cases of explicit CP violation and spontaneous CP violation. We present a detailed study of weak basis invariants which are odd under CP. A careful study of spontaneous CP violation is presented, including an analysis of the conditions which have to be satisfied in order for a vacuum to violate CP. We present minimal models of CP violation where the vacuum phase is sufficient to generate a complex CKM matrix, which is at present a requirement for any realistic model of spontaneous CP violation.Comment: v3: 180 pages, 506 references, new chapter 7 with recent LHC results; referee comments taken into account; submitted to Physics Report

    b-Jet Identification in the D0 Experiment

    Get PDF
    Algorithms distinguishing jets originating from b quarks from other jet flavors are important tools in the physics program of the D0 experiment at the Fermilab Tevatron p-pbar collider. This article describes the methods that have been used to identify b-quark jets, exploiting in particular the long lifetimes of b-flavored hadrons, and the calibration of the performance of these algorithms based on collider data.Comment: submitted to Nuclear Instruments and Methods in Physics Research
    corecore