6 research outputs found
Electron Dephasing in Mesoscopic Metal Wires
The low-temperature behavior of the electron phase coherence time,
, in mesoscopic metal wires has been a subject of controversy
recently. Whereas theory predicts that in narrow wires should
increase as as the temperature is lowered, many samples exhibit
a saturation of below about 1 K. We review here the experiments
we have performed recently to address this issue. In particular we emphasize
that in sufficiently pure Ag and Au samples we observe no saturation of
down to our base temperature of 40 mK. In addition, the measured
magnitude of is in excellent quantitative agreement with the
prediction of the perturbative theory of Altshuler, Aronov and Khmelnitskii. We
discuss possible explanations why saturation of is observed in
many other samples measured in our laboratory and elsewhere, and answer the
criticisms raised recently by Mohanty and Webb regarding our work.Comment: 14 pages, 3 figures; to appear in proceedings of conference
"Fundamental Problems of Mesoscopic Physics", Granada, Spain, 6-11 September,
200
Dephasing of Electrons in Mesoscopic Metal Wires
We have extracted the phase coherence time of electronic
quasiparticles from the low field magnetoresistance of weakly disordered wires
made of silver, copper and gold. In samples fabricated using our purest silver
and gold sources, increases as when the temperature
is reduced, as predicted by the theory of electron-electron interactions in
diffusive wires. In contrast, samples made of a silver source material of
lesser purity or of copper exhibit an apparent saturation of
starting between 0.1 and 1 K down to our base temperature of 40 mK. By
implanting manganese impurities in silver wires, we show that even a minute
concentration of magnetic impurities having a small Kondo temperature can lead
to a quasi saturation of over a broad temperature range, while
the resistance increase expected from the Kondo effect remains hidden by a
large background. We also measured the conductance of Aharonov-Bohm rings
fabricated using a very pure copper source and found that the amplitude of the
conductance oscillations increases strongly with magnetic field. This set
of experiments suggests that the frequently observed ``saturation'' of
in weakly disordered metallic thin films can be attributed to
spin-flip scattering from extremely dilute magnetic impurities, at a level
undetectable by other means.Comment: 16 pages, 11 figures, to be published in Physical Review
Numerical analysis of the radio-frequency single-electron transistor operation
We have analyzed numerically the response and noise-limited charge
sensitivity of a radio-frequency single-electron transistor (RF-SET) in a
non-superconducting state using the orthodox theory. In particular, we have
studied the performance dependence on the quality factor Q of the tank circuit
for Q both below and above the value corresponding to the impedance matching
between the coaxial cable and SET.Comment: 14 page
Photon shot noise limited detection of terahertz radiation using a quantum capacitance detector
We observed a sweep rate dependence of the quantum capacitance in a single Cooper-Pair box used as the readout of a Quantum Capacitance Detector. A model was developed that fits the data over five orders of magnitude in sweep rate and optical signal power and provides a natural calibration of the absorbed power. We are thereby able to measure the noise equivalent power of the detector as a function of absorbed power. We find that it is shot-noise-limited in detecting 1.5?THz photons with absorbed power ranging from 1 × 10?22 W to 1 × 10?17 W.MicroelectronicsElectrical Engineering, Mathematics and Computer Scienc
