29 research outputs found
Influence of Ca2+ depletion on cytoskeleton and nucleolus morphology in Trypanosoma brucei
A combined bioinformatics and chemoinformatics approach for the development of new antiparasitic drugs
Docking-based virtual screening of covalently binding ligands: an orthogonal lead discovery approach
In pharmaceutical industry, lead discovery strategies and screening collections have been predominantly tailored to discover compounds that modulate target proteins through noncovalent interactions. Conversely, covalent linkage formation is an important mechanism for a quantity of successful drugs in the market, which are discovered in most cases by hindsight instead of systematical design. In this article, the implementation of a docking-based virtual screening workflow for the retrieval of covalent binders is presented considering human cathepsin K as a test case. By use of the docking conditions that led to the best enrichment of known actives, 44 candidate compounds with unknown activity on cathepsin K were finally selected for experimental evaluation. The most potent inhibitor, 4-(N-phenylanilino)-6-pyrrolidin-1-yl-1,3,5-triazine-2-carbonitrile (CP243522), showed a Ki of 21 nM and was confirmed to have a covalent reversible mechanism of inhibition. The presented approach will have great potential in cases where covalent inhibition is the desired drug discovery strategy
Identification and characterisation of the dopamine receptor II from the cat flea Ctenocephalides felis (CfDopRII)
International audienceG protein-coupled receptors (GPCRs) represent a protein family with a wide range of functions. Approximately 30% of human drug targets are GPCRs, illustrating their pharmaceutical relevance. In contrast, the knowledge about invertebrate GPCRs is limited and is mainly restricted to model organisms like Drosophila melanogaster and Caenorhabditis elegans. Especially in ectoparasites like ticks and fleas, only few GPCRs are characterised. From the cat flea Ctenocephalides felis, a relevant parasite of cats and dogs, no GPCRs are known so far. Thus, we performed a bioinformatic analysis of available insect GPCR sequences from the honeybee Apis mellifera, the mosquito Anopheles gambiae, the fruit fly Drosophila melanogaster and genomic sequences from insect species. Aim of this analysis was the identification of highly conserved GPCRs in order to clone orthologs of these candidates from Ctenocephalides felis. It was found that the dopamine receptor family revealed highest conservation levels and thus was chosen for further characterisation. In this work, the identification, full-length cloning and functional expression of the first GPCR from Ctenocephalides felis, the dopamine receptor II (CfDopRII), are described
