14,050 research outputs found
Metallobiology of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a potent toxin used to selectively destroy dopaminergic neurons in the substantia nigra and induce parkinsonism. MPTP is metabolised to the 1-methyl-4-phenylpyridinium ion (MPP+) in glia, after which it enters the neuron via the dopamine transporter and results in elevated levels of oxidative stress. The mechanism through which MPP+ causes cell death is thought to involve redox-active metals, particularly iron (Fe). This review will examine how cellular metal metabolism is altered following MPTP insult, and how this relates to metal dyshomeostasis in idiopathic Parkinson's disease. This includes both cell damage arising from increased metal concentration, and how metal-binding proteins respond to MPTP-induced neurotoxicity. Implications for using MPTP as a model for human Parkinson's disease will be discussed in terms of cell metallobiology. © 2013 The Royal Society of Chemistry
A time-course analysis of changes in cerebral metal levels following a controlled cortical impact
© 2016 The Royal Society of Chemistry. Traumatic brain injury (TBI) is complicated by a sudden and dramatic change in brain metal levels, including iron (Fe), copper (Cu) and zinc (Zn). Specific 'metallo-pathological' features of TBI include increased non-heme bound Fe and the liberation of free Zn ions, both of which may contribute to the pathogenesis of TBI. To further characterise the metal dyshomeostasis that occurs following brain trauma, we performed a quantitative time-course survey of spatial Fe, Cu and Zn distribution in mice receiving a controlled cortical impact TBI. Images of brain metal levels produced using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) in the upper quadrant of the ipsilateral hemisphere were compared to the corresponding contralateral hemisphere, together with regional areas radiating toward the center of the brain from the site of lesion. Significant regional and time point specific elevations in Fe, Zn and Cu were detected immediately and up to 28 days after TBI. The magnitude and timeframe of many of these changes suggest that TBI results in a pronounced and sustained alteration in normal metal levels within the brain. Such alterations are likely to play a role in both the short- and long-term consequences of head trauma and suggest that pharmacological modulation to normalize these metal levels may be efficacious in improving functional outcome
Recommended from our members
A novel laboratory scale method for studying heat treatment of cake flour
A lab-scale method for replicating the time–temperature history experienced by cake flours undergoing heat treatment was developed based on a packed bed configuration. The performance of heat-treated flours was compared with untreated and commercially heat-treated flour by test baking a high ratio cake formulation. Both cake volume and AACC shape measures were optimal after 15 min treatment at 130 °C, though their values varied between harvests. Separate oscillatory rheometry tests of cake batter at 80–100 °C exhibited similar behaviour to the baking tests. The gel strength parameter in the weak gel model, measured at 100 °C, was shown to correlate with flour quality and was identified as a possible alternative to test baking as a means of assessing flour quality after heat treatment.A CASE Ph.D. Studentship for AKSC from the Food Processing Faraday and support from Premier Foods are all gratefully acknowledged.This is the accepted manuscript version. The final version is available from Elsevier at http://www.sciencedirect.com/science/article/pii/S0260877414003112
Genetic and biochemical analyses of chromosome and plasmid gene homologues encoding ICL and ArCP domains in Vibrioanguillarum strain 775
Anguibactin, the siderophore produced by Vibrio anguillarum 775 is synthesized from 2,3-dihydroxybenzoic acid (DHBA), cysteine and hydroxyhistamine via a nonribosomal peptide synthetase (NRPS) mechanism. Most of the genes encoding anguibactin biosynthetic proteins are harbored by the pJM1 plasmid. In this work we report the identification of a homologue of the plasmid-encoded angB on the chromosome of strain 775. The product of both genes harbor an isochorismate lyase (ICL) domain that converts isochorismic acid to 2,3-dihydro-2,3-dihydroxybenzoic acid, one of the steps of DHBA synthesis. We show in this work that both ICL domains are functional in the production of DHBA in V. anguillarum as well as in E. coli. Substitution by alanine of the aspartic acid residue in the active site of both ICL domains completely abolishes their isochorismate lyase activity in vivo. The two proteins also carry an aryl carrier protein (ArCP) domain. In contrast with the ICL domains only the plasmid encoded ArCP can participate in anguibactin production as determined by complementation analyses and site-directed mutagenesis in the active site of the plasmid encoded protein, S248A. The site-directed mutants, D37A in the ICL domain and S248A in the ArCP domain of the plasmid encoded AngB were also tested in vitro and clearly show the importance of each residue for the domain function and that each domain operates independently.
Three-dimensional elemental bio-imaging of Fe, Zn, Cu, Mn and P in a 6-hydroxydopamine lesioned mouse brain
Three dimensional maps of iron (Fe), zinc (Zn), copper (Cu), manganese (Mn) and phosphorous (P) in a 6-hydroxydopamine (6-OHDA) lesioned mouse brain were constructed employing a novel quantitative laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) imaging method known as elemental bio-imaging. The 3D maps were produced by ablating serial consecutive sections taken from the same animal. Each section was quantified against tissue standards resulting in a three dimensional map that represents the variation of trace element concentrations of the mouse brain in the area surrounding the substantia nigra (SN). Damage caused by the needle or the toxin did not alter the distribution of Zn, and Cu but significantly altered Fe in and around the SN and both Mn and Fe around the needle track. A 20% increase in nigral Fe concentration was observed within the lesioned hemisphere. This technique clearly shows the natural heterogeneous distributions of these elements throughout the brain and the perturbations that occur following trauma or intoxication. The method may applied to three-dimensional modelling of trace elements in a wide range of tissue samples. © 2010 The Royal Society of Chemistry
Metal chaperones prevent zinc-mediated cognitive decline
© 2014 Elsevier Inc. Zinc transporter-3 (ZnT3) protein is responsible for loading zinc into presynaptic vesicles and consequently controls the availability of zinc at the glutamatergic synapse. ZnT3 has been shown to decline with age and in Alzheimer's disease (AD) and is crucially involved in learning and memory. In this study, we utilised whole animal behavioural analyses in the ZnT3 KO mouse line, together with electrophysiological analysis of long-term potentiation in brain slices from ZnT3 KO mice, to show that metal chaperones (clioquinol, 30 mg/kg/day for 6 weeks) can prevent the age-dependent cognitive phenotype that characterises these animals. This likely occurs as a result of a homeostatic restoration of synaptic protein expression, as clioquinol significantly restored levels of various pre- and postsynaptic proteins that are critical for normal cognition, including PSD-95; AMPAR and NMDAR2b. We hypothesised that this clioquinol-mediated restoration of synaptic health resulted from a selective increase in synaptic zinc content within the hippocampus. While we demonstrated a small regional increase in hippocampal zinc content using synchrotron x-ray fluorescence microscopy, further sub-region analyses are required to determine whether this effect is seen in other regions of the hippocampal formation that are more closely linked to the synaptic plasticity effects observed in this study. These data support our recent report on the use of a different metal chaperone (PBT2) to prevent normal age-related cognitive decline and demonstrate that metal chaperones are efficacious in preventing the zinc-mediated cognitive decline that characterises ageing and disease
A Femtosecond Neutron Source
The possibility to use the ultrashort ion bunches produced by circularly
polarized laser pulses to drive a source of fusion neutrons with sub-optical
cycle duration is discussed. A two-side irradiation of a thin foil deuterated
target produces two countermoving ion bunches, whose collision leads to an
ultrashort neutron burst. Using particle-in-cell simulations and analytical
modeling, it is evaluated that, for intensities of a few ,
more than neutrons per Joule may be produced within a time shorter than
one femtosecond. Another scheme based on a layered deuterium-tritium target is
outlined.Comment: 15 pages, 3 figure
Trophy hunting certification
Adaptive certification is the best remaining option for the trophy hunting industry in Africa to demonstrate sustainable and ethical hunting practices that benefit local communities and wildlife conservation
The non-compact elliptic genus: mock or modular
We analyze various perspectives on the elliptic genus of non-compact
supersymmetric coset conformal field theories with central charge larger than
three. We calculate the holomorphic part of the elliptic genus via a free field
description of the model, and show that it agrees with algebraic expectations.
The holomorphic part of the elliptic genus is directly related to an
Appell-Lerch sum and behaves anomalously under modular transformation
properties. We analyze the origin of the anomaly by calculating the elliptic
genus through a path integral in a coset conformal field theory. The path
integral codes both the holomorphic part of the elliptic genus, and a
non-holomorphic remainder that finds its origin in the continuous spectrum of
the non-compact model. The remainder term can be shown to agree with a function
that mathematicians introduced to parameterize the difference between mock
theta functions and Jacobi forms. The holomorphic part of the elliptic genus
thus has a path integral completion which renders it non-holomorphic and
modular.Comment: 13 page
GCA in 2d
We make a detailed study of the infinite dimensional Galilean Conformal
Algebra (GCA) in the case of two spacetime dimensions. Classically, this
algebra is precisely obtained from a contraction of the generators of the
relativistic conformal symmetry in 2d. Here we find quantum mechanical
realisations of the (centrally extended) GCA by considering scaling limits of
certain 2d CFTs. These parent CFTs are non-unitary and have their left and
right central charges become large in magnitude and opposite in sign. We
therefore develop, in parallel to the usual machinery for 2d CFT, many of the
tools for the analysis of the quantum mechanical GCA. These include the
representation theory based on GCA primaries, Ward identities for their
correlation functions and a nonrelativistic Kac table. In particular, the null
vectors of the GCA lead to differential equations for the four point function.
The solution to these equations in the simplest case is explicitly obtained and
checked to be consistent with various requirements.Comment: 45 pages; v2: 47 pages. Restructured introduction, minor corrections,
added references. Journal versio
- …
