20 research outputs found

    Administration of single-dose GnRH agonist in the luteal phase in ICSI cycles: a meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The effects of gonadotrophin-releasing hormone agonist (GnRH-a) administered in the luteal phase remains controversial. This meta-analysis aimed to evaluate the effect of the administration of a single-dose of GnRH-a in the luteal phase on ICSI clinical outcomes.</p> <p>Methods</p> <p>The research strategy included the online search of databases. Only randomized studies were included. The outcomes analyzed were implantation rate, clinical pregnancy rate (CPR) per transfer and ongoing pregnancy rate. The fixed effects model was used for odds ratio. In all trials, a single dose of GnRH-a was administered at day 5/6 after ICSI procedures.</p> <p>Results</p> <p>All cycles presented statistically significantly higher rates of implantation (P < 0.0001), CPR per transfer (P = 0.006) and ongoing pregnancy (P = 0.02) in the group that received luteal-phase GnRH-a administration than in the control group (without luteal-phase-GnRH-a administration). When meta-analysis was carried out only in trials that had used long GnRH-a ovarian stimulation protocol, CPR per transfer (P = 0.06) and ongoing pregnancy (P = 0.23) rates were not significantly different between the groups, but implantation rate was significant higher (P = 0.02) in the group that received luteal-phase-GnRH-a administration. On the other hand, the results from trials that had used GnRH antagonist multi-dose ovarian stimulation protocol showed statistically significantly higher implantation (P = 0.0002), CPR per transfer (P = 0.04) and ongoing pregnancy rate (P = 0.04) in the luteal-phase-GnRH-a administration group. The majority of the results presented heterogeneity.</p> <p>Conclusions</p> <p>These findings demonstrate that the luteal-phase single-dose GnRH-a administration can increase implantation rate in all cycles and CPR per transfer and ongoing pregnancy rate in cycles with GnRH antagonist ovarian stimulation protocol. Nevertheless, by considering the heterogeneity between the trials, it seems premature to recommend the use of GnRH-a in the luteal phase. Additional randomized controlled trials are necessary before evidence-based recommendations can be provided.</p

    Stromal cells from endometriotic lesions and endometrium from women with endometriosis have reduced decidualization capacity.

    No full text
    OBJECTIVE: To evaluate the phenotype, proliferative, and differentiation capacities in vitro of stromal cells derived from peritoneal, ovarian, and deeply infiltrating endometriosis. DESIGN: Experimental study using phase contrast microscopy, immunocytochemistry, and functional bioassays. SETTING: University-based laboratory. PATIENT(S): Women with and without endometriosis undergoing surgery for benign indications. INTERVENTION(S): None. MAIN OUTCOME MEASURE(S): The stability in vitro of stromal cells derived from peritoneal (n = 18), ovarian (n = 29), and deeply infiltrating (n = 14) endometriotic lesions, as well as endometrium from women with (n = 5) and without endometriosis (n = 5) was evaluated by detection of endometrial markers. The proliferative and differentiation capacity of the cells was assessed by the use of cell doubling estimation and in vitro decidualization assays. RESULT(S): The expression of the progesterone receptor and CD10 in stromal cells derived from the three types of endometriotic lesions is retained in culture up to passage 10. The doubling time of stromal cells from deeply infiltrating lesions is lower than that of endometrial stromal cells. Levels of prolactin and insulin-like growth factor binding protein-1 (IGFBP-1) are reduced in supernatants from stromal cells derived from the three types of lesions and from the endometrium of women with endometriosis. CONCLUSION(S): The peritoneal, ovarian, and deeply infiltrating endometriotic stromal cell lines we describe retain in vivo tissue markers. Loss of differentiation capacity of the endometriotic cell lines and endometrial cells from women with endometriosis may influence the capacity for proliferation and survival of these cells in the ectopic environment

    Stromal cells from endometriotic lesions and endometrium from women with endometriosis have reduced decidualization capacity.

    No full text
    OBJECTIVE: To evaluate the phenotype, proliferative, and differentiation capacities in vitro of stromal cells derived from peritoneal, ovarian, and deeply infiltrating endometriosis. DESIGN: Experimental study using phase contrast microscopy, immunocytochemistry, and functional bioassays. SETTING: University-based laboratory. PATIENT(S): Women with and without endometriosis undergoing surgery for benign indications. INTERVENTION(S): None. MAIN OUTCOME MEASURE(S): The stability in vitro of stromal cells derived from peritoneal (n = 18), ovarian (n = 29), and deeply infiltrating (n = 14) endometriotic lesions, as well as endometrium from women with (n = 5) and without endometriosis (n = 5) was evaluated by detection of endometrial markers. The proliferative and differentiation capacity of the cells was assessed by the use of cell doubling estimation and in vitro decidualization assays. RESULT(S): The expression of the progesterone receptor and CD10 in stromal cells derived from the three types of endometriotic lesions is retained in culture up to passage 10. The doubling time of stromal cells from deeply infiltrating lesions is lower than that of endometrial stromal cells. Levels of prolactin and insulin-like growth factor binding protein-1 (IGFBP-1) are reduced in supernatants from stromal cells derived from the three types of lesions and from the endometrium of women with endometriosis. CONCLUSION(S): The peritoneal, ovarian, and deeply infiltrating endometriotic stromal cell lines we describe retain in vivo tissue markers. Loss of differentiation capacity of the endometriotic cell lines and endometrial cells from women with endometriosis may influence the capacity for proliferation and survival of these cells in the ectopic environment

    The impact of endometriosis on the outcome of Assisted Reproductive Technology

    Get PDF
    BACKGROUND: Endometriosis has been described to impair fertility through various mechanisms. However, studies evaluating the reproductive outcomes of women undergoing assisted reproductive technologies show controversial results. The aim of this study is to assess whether the reproductive outcome is impaired among women with endometriosis-associated infertility undergoing IVF. METHODS: A retrospective cohort study was performed, including women undergoing IVF reported by the Red Latinoamericana de Reproduccion Asistida (Redlara) registry, between January 2010 and December 2012. The study group included women with endometriosis-associated infertility, and the control group women with tubal factor, endocrine disorders or unexplained infertility. Women above 40 years, severe male factor and premature ovarian failure were excluded. The reproductive outcomes of between both groups were compared. The primary outcome was live birth. Secondary outcomes included clinical pregnancy, miscarriage, number of oocytes retrieved and number of fertilized oocytes. Outcomes were assessed after the first fresh IVF cycle, and were adjusted for age and number of embryos transferred. RESULTS: A total of 22.416 women were included (3.583 with endometriosis and 18.833 in the control group). Mean age of patients in the endometriosis group and control group was 34.86 (3.47) and 34.61 (3.91) respectively, p = 0.000. The mean number of oocytes retrieved were 8.89 (6.23) and 9.86 (7.02) respectively, p = 0.000. No significant differences were observed between groups in terms of live birth (odds ratio (OR) 1.032, p = 0.556), clinical pregnancy (OR 1.044, p = 0.428) and miscarriage rates (OR 1.049, p = 0.623). Women with endometriosis had significantly lower number of oocytes retrieved (incidence risk ratio (IRR) 0.917, 95% CI 0.895-0.940), however, the number of fertilized oocytes did not differ among the two groups when adjusting for the number of oocytes retrieved (IRR 1.003, p = 0.794). An age-stratified analysis was performed, and no differences were observed in the reproductive outcomes between groups for women aged under 35 and 35 to 40. CONCLUSIONS: Reproductive outcomes among women undergoing IVF and diagnosed with endometriosis-associated infertility do not differ significantly from women without the disease. Although women with endometriosis generate fewer oocytes, fertilization rate is not impaired and the likelihood of achieving a live birth is also not affected

    Molecular Mechanisms Responsible for Anti-inflammatory and Immunosuppressive Effects of Mesenchymal Stem Cell-Derived Factors.

    No full text
    Mesenchymal stem cells (MSCs) are self-renewable cells capable for multilineage differentiation and immunomodulation. MSCs are able to differentiate into all cell types of mesodermal origin and, due to their plasticity, may generate cells of neuroectodermal or endodermal origin in vitro. In addition to the enormous differentiation potential, MSCs efficiently modulate innate and adaptive immune response and, accordingly, were used in large number of experimental and clinical trials as new therapeutic agents in regenerative medicine. Although MSC-based therapy was efficient in the treatment of many inflammatory and degenerative diseases, unwanted differentiation of engrafted MSCs represents important safety concern. MSC-based beneficial effects are mostly relied on the effects of MSC-derived immunomodulatory, pro-angiogenic, and trophic factors which attenuate detrimental immune response and inflammation, reduce ischemic injuries, and promote tissue repair and regeneration. Accordingly, MSC-conditioned medium (MSC-CM), which contains MSC-derived factors, has the potential to serve as a cell-free, safe therapeutic agent for the treatment of inflammatory diseases. Herein, we summarized current knowledge regarding identification, isolation, ontogeny, and functional characteristics of MSCs and described molecular mechanisms responsible for MSC-CM-mediated anti-inflammatory and immunosuppressive effects in the therapy of inflammatory lung, liver, and kidney diseases and ischemic brain injury
    corecore