18,637 research outputs found

    Differences in Physical Activity and Built Environment Perceptions Between Younger and Older Adults Living in the Same Rural

    Get PDF
    This study examined associations between perceptions and physical activity of younger and older adults residing in the same rural/small town community. Thirty-two adults completed interviews about their community and their physical activity. Both groups perceived their neighborhood as pleasant and safe to be active. Fewer older adults perceived their neighborhood as having sidewalks. Younger adults reported being more vigorously active and they were more often utilizing private membership clubs for physical activity. Older adults utilized more public recreational facilities. These results suggest that higher perceived quality of the neighborhood built environment can enhance participation in moderate exercise in older adults

    NEXTCALIBUR - A four-fermion generator for electron-positron collisions

    Get PDF
    A fully massive Monte Carlo program to compute all four-fermion processes in electron positron collisions, including Higgs boson production, is presented. Leading higher order effects are discussed and included.Comment: 38 pages, Latex, uses axodraw.sty, submitted to Computer Physics Communication

    Harmonized Cellular and Distributed Massive MIMO: Load Balancing and Scheduling

    Full text link
    Multi-tier networks with large-array base stations (BSs) that are able to operate in the "massive MIMO" regime are envisioned to play a key role in meeting the exploding wireless traffic demands. Operated over small cells with reciprocity-based training, massive MIMO promises large spectral efficiencies per unit area with low overheads. Also, near-optimal user-BS association and resource allocation are possible in cellular massive MIMO HetNets using simple admission control mechanisms and rudimentary BS schedulers, since scheduled user rates can be predicted a priori with massive MIMO. Reciprocity-based training naturally enables coordinated multi-point transmission (CoMP), as each uplink pilot inherently trains antenna arrays at all nearby BSs. In this paper we consider a distributed-MIMO form of CoMP, which improves cell-edge performance without requiring channel state information exchanges among cooperating BSs. We present methods for harmonized operation of distributed and cellular massive MIMO in the downlink that optimize resource allocation at a coarser time scale across the network. We also present scheduling policies at the resource block level which target approaching the optimal allocations. Simulations reveal that the proposed methods can significantly outperform the network-optimized cellular-only massive MIMO operation (i.e., operation without CoMP), especially at the cell edge

    Identification issues in models for underreported counts

    Get PDF
    In this note we study the conditions under which leading models for underreported counts are identified. In particular, we highlight a peculiar identification problem that afflicts two of the most popular models in this class.

    A hierarchical phase space generator for QCD antenna structures

    Get PDF
    We present a ``hierarchical'' strategy for phase space generation in order to efficiently map the antenna momentum structures, typically occurring in QCD amplitudes.Comment: 21 pages, few typos corrected, figure added, to appear in Eur.Phys.J.

    t tbar W and t tbar Z Hadroproduction at NLO accuracy in QCD with Parton Shower and Hadronization effects

    Get PDF
    We present theoretical predictions for the hadroproduction of t tbar W+, t tbar W- and t tbar Z at LHC as obtained by matching numerical computations at NLO accuracy in QCD with Shower Monte Carlo programs. The calculation is performed by PowHel, relying on the POWHEG-BOX framework, that allows for the matching between the fixed order computation, with input of matrix elements produced by the HELAC-NLO collection of event generators, and the Parton Shower evolution, followed by hadronization and hadron decays as described by PYTHIA and HERWIG. We focus on the dilepton and trilepton decay channels, studied recently by the CMS Collaboration.Comment: 21 pages 12 figure

    Achieving "Massive MIMO" Spectral Efficiency with a Not-so-Large Number of Antennas

    Full text link
    The main focus and contribution of this paper is a novel network-MIMO TDD architecture that achieves spectral efficiencies comparable with "Massive MIMO", with one order of magnitude fewer antennas per active user per cell. The proposed architecture is based on a family of network-MIMO schemes defined by small clusters of cooperating base stations, zero-forcing multiuser MIMO precoding with suitable inter-cluster interference constraints, uplink pilot signals reuse across cells, and frequency reuse. The key idea consists of partitioning the users population into geographically determined "bins", such that all users in the same bin are statistically equivalent, and use the optimal network-MIMO architecture in the family for each bin. A scheduler takes care of serving the different bins on the time-frequency slots, in order to maximize a desired network utility function that captures some desired notion of fairness. This results in a mixed-mode network-MIMO architecture, where different schemes, each of which is optimized for the served user bin, are multiplexed in time-frequency. In order to carry out the performance analysis and the optimization of the proposed architecture in a clean and computationally efficient way, we consider the large-system regime where the number of users, the number of antennas, and the channel coherence block length go to infinity with fixed ratios. The performance predicted by the large-system asymptotic analysis matches very well the finite-dimensional simulations. Overall, the system spectral efficiency obtained by the proposed architecture is similar to that achieved by "Massive MIMO", with a 10-fold reduction in the number of antennas at the base stations (roughly, from 500 to 50 antennas).Comment: Full version with appendice (proofs of theorems). A shortened version without appendice was submitted to IEEE Trans. on Wireless Commun. Appendix B was revised after submissio
    corecore