115 research outputs found
Fauxcurrence: simulating multi-species occurrences for null models in species distribution modelling and biogeography
The work was funded by Newton Fund (UK)/NERC (UK)/RISTEKDIKTI (Indonesia) grants awarded to JT, BJ, ACA, ASTP, CG-R, GB and LTL (grant no.: NE/S006923/1, NE/S006893/1, 2488/IT3.L1/PN/2020 and 3982/IT3.L1/PN/2020). GB and CG-R are funded by Royal Society Univ. Research Fellowships (UF160614 and UF150571 respectively).Peer reviewedPublisher PD
Evaluation of Analytical Methods to Study Aquifer Properties with Pumping Tests in Coastal Aquifers with Numerical Modelling (Motril-Salobreña Aquifer)
Two pumping tests were performed in the unconfined Motril-Salobreña detrital
aquifer in a 250 m-deep well 300 m from the coastline containing both freshwater and
saltwater. It is an artesian well as it is in the discharge zone of this coastal aquifer. The two
observation wells where the drawdowns are measured record the influence of tidal fluctuations, and the well lithological columns reveal high vertical heterogeneity in the aquifer. The
Theis and Cooper-Jacob approaches give average transmissivity (T) and storage
coefficient (S) values of 1460 m2
/d and 0.027, respectively. Other analytical solutions,
modified to be more accurate in the boundary conditions found in coastal aquifers,
provide similar T values to those found with the Theis and Cooper-Jacob methods,
but give very different S values or could not estimate them. Numerical modelling in a
synthetic model was applied to analyse the sensitivity of the Theis and Cooper-Jacob
approaches to the usual boundary conditions in coastal aquifers. The T and S values
calculated from the numerical modelling drawdowns indicate that the regional flow,
variable pumping flows, and tidal effect produce an error of under 10 % compared to results
obtained with classic methods. Fluids of different density (freshwater and saltwater) cause an
error of 20 % in estimating T and of over 100 % in calculating S. The factor most affecting T and
S results in the pumping test interpretation is vertical heterogeneity in sediments, which can
produce errors of over 100 % in both parameters.This research has been financed by Project CGL2012-32892 (Ministerio de Economía y
Competitividad of Spain) and by the Research Group Sedimentary Geology and Groundwater (RNM-369) of the
Junta de Andalucía
Unconfined Aquifer Flow Theory - from Dupuit to present
Analytic and semi-analytic solution are often used by researchers and
practicioners to estimate aquifer parameters from unconfined aquifer pumping
tests. The non-linearities associated with unconfined (i.e., water table)
aquifer tests makes their analysis more complex than confined tests. Although
analytical solutions for unconfined flow began in the mid-1800s with Dupuit,
Thiem was possibly the first to use them to estimate aquifer parameters from
pumping tests in the early 1900s. In the 1950s, Boulton developed the first
transient well test solution specialized to unconfined flow. By the 1970s
Neuman had developed solutions considering both primary transient storage
mechanisms (confined storage and delayed yield) without non-physical fitting
parameters. In the last decade, research into developing unconfined aquifer
test solutions has mostly focused on explicitly coupling the aquifer with the
linearized vadose zone. Despite the many advanced solution methods available,
there still exists a need for realism to accurately simulate real-world aquifer
tests
Inner/Outer Nuclear Membrane Fusion in Nuclear Pore Assembly: Biochemical Demonstration and Molecular Analysis
The nuclear pore complex (NPC) is characterized by a long-lived membrane-lined channel connecting the inner and outer nuclear membranes. This stabilized membrane channel, within which the nuclear pore is built, has little evolutionary precedent. In this report we demonstrate and map the inner/outer nuclear membrane fusion in NPC assembly
Madagascar’s extraordinary biodiversity: Evolution, distribution, and use
Madagascar's biota is hyperdiverse and includes exceptional levels of endemicity. We review the current state of knowledge on Madagascar's past and current terrestrial and freshwater biodiversity by compiling and presenting comprehensive data on species diversity, endemism, and rates of species description and human uses, in addition to presenting an updated and simplified map of vegetation types. We report a substantial increase of records and species new to science in recent years; however, the diversity and evolution of many groups remain practically unknown (e.g., fungi and most invertebrates). Digitization efforts are increasing the resolution of species richness patterns and we highlight the crucial role of field- and collections-based research for advancing biodiversity knowledge and identifying gaps in our understanding, particularly as species richness corresponds closely to collection effort. Phylogenetic diversity patterns mirror that of species richness and endemism in most of the analyzed groups. We highlight humid forests as centers of diversity and endemism because of their role as refugia and centers of recent and rapid radiations. However, the distinct endemism of other areas, such as the grassland-woodland mosaic of the Central Highlands and the spiny forest of the southwest, is also biologically important despite lower species richness. The documented uses of Malagasy biodiversity are manifold, with much potential for the uncovering of new useful traits for food, medicine, and climate mitigation. The data presented here showcase Madagascar as a unique living laboratory for our understanding of evolution and the complex interactions between people and nature. The gathering and analysis of biodiversity data must continue and accelerate if we are to fully understand and safeguard this unique subset of Earth's biodiversity
Madagascar’s extraordinary biodiversity: Threats and opportunities
Madagascar's unique biota is heavily affected by human activity and is under intense threat. Here, we review the current state of knowledge on the conservation status of Madagascar's terrestrial and freshwater biodiversity by presenting data and analyses on documented and predicted species-level conservation statuses, the most prevalent and relevant threats, ex situ collections and programs, and the coverage and comprehensiveness of protected areas. The existing terrestrial protected area network in Madagascar covers 10.4% of its land area and includes at least part of the range of the majority of described native species of vertebrates with known distributions (97.1% of freshwater fishes, amphibians, reptiles, birds, and mammals combined) and plants (67.7%). The overall figures are higher for threatened species (97.7% of threatened vertebrates and 79.6% of threatened plants occurring within at least one protected area). International Union for Conservation of Nature (IUCN) Red List assessments and Bayesian neural network analyses for plants identify overexploitation of biological resources and unsustainable agriculture as themost prominent threats to biodiversity. We highlight five opportunities for action at multiple levels to ensure that conservation and ecological restoration objectives, programs, and activities take account of complex underlying and interacting factors and produce tangible benefits for the biodiversity and people of Madagascar
Transauricular balloon angioplasty in rabbit thoracic aorta: a novel model of experimental restenosis
- …
