8,184 research outputs found

    Systematic pathway to PT{\mathcal{PT}} symmetry breaking in scattering systems

    Full text link
    Recently [Phys. Rev. Lett. {\bf 106}, 093902 (2011)] it has been shown that PT\mathcal{PT}-symmetric scattering systems with balanced gain and loss, undergo a transition from PT\mathcal{PT}-symmetric scattering eigenstates, which are norm preserving, to symmetry broken pairs of eigenstates exhibiting net amplification and loss. In the present work we derive the existence of an invariant non-local current which can be directly associated with the observed transition playing the role of an "order parameter". The use of this current for the description of the PT\mathcal{PT}-symmetry breaking allows the extension of the known phase diagram to higher dimensions incorporating scattering states which are not eigenstates of the scattering matrix.Comment: 5 pages, 2 figure

    Emission of Massive Scalar Fields by a Higher-Dimensional Rotating Black-Hole

    Full text link
    We perform a comprehensive study of the emission of massive scalar fields by a higher-dimensional, simply rotating black hole both in the bulk and on the brane. We derive approximate, analytic results as well as exact numerical ones for the absorption probability, and demonstrate that the two sets agree very well in the low and intermediate-energy regime for scalar fields with mass m_\Phi < 1 TeV in the bulk and m_\Phi < 0.5 TeV on the brane. The numerical values of the absorption probability are then used to derive the Hawking radiation power emission spectra in terms of the number of extra dimensions, angular-momentum of the black hole and mass of the emitted field. We compute the total emissivities in the bulk and on the brane, and demonstrate that, although the brane channel remains the dominant one, the bulk-over-brane energy ratio is considerably increased (up to 33%) when the mass of the emitted field is taken into account.Comment: 28 pages, 18 figure

    Quantum Sensor Miniaturization

    Full text link
    The classical bound on image resolution defined by the Rayleigh limit can be beaten by exploiting the properties of quantum mechanical entanglement. If entangled photons are used as signal states, the best possible resolution is instead given by the Heisenberg limit, an improvement proportional to the number of entangled photons in the signal. In this paper we present a novel application of entanglement by showing that the resolution obtained by an imaging system utilizing separable photons can be achieved by an imaging system making use of entangled photons, but with the advantage of a smaller aperture, thus resulting in a smaller and lighter system. This can be especially valuable in satellite imaging where weight and size play a vital role.Comment: 3 pages, 1 figure. Accepted for publication in Photonics Technology Letter
    corecore