2,011 research outputs found
Constraints on Light Dark Matter From Core-Collapse Supernovae
We show that light ( 1 -- 30 MeV) dark matter particles can play a
significant role in core-collapse supernovae, if they have relatively large
annihilation and scattering cross sections, as compared to neutrinos. We find
that if such particles are lighter than 10 MeV and reproduce the
observed dark matter relic density, supernovae would cool on a much longer time
scale and would emit neutrinos with significantly smaller energies than in the
standard scenario, in disagreement with observations. This constraint may be
avoided, however, in certain situations for which the neutrino--dark matter
scattering cross sections remain comparatively small.Comment: 4 pages, 1 figur
Improving information/disturbance and estimation/distortion trade-offs with non universal protocols
We analyze in details a conditional measurement scheme based on linear
optical components, feed-forward loop and homodyne detection. The scheme may be
used to achieve two different tasks. On the one hand it allows the extraction
of information with minimum disturbance about a set of coherent states. On the
other hand, it represents a nondemolitive measurement scheme for the
annihilation operator, i.e. an indirect measurement of the Q-function. We
investigate the information/disturbance trade-off for state inference and
introduce the estimation/distortion trade-off to assess estimation of the
Q-function. For coherent states chosen from a Gaussian set we evaluate both
information/disturbance and estimation/distortion trade-offs and found that non
universal protocols may be optimized in order to achieve better performances
than universal ones. For Fock number states we prove that universal protocols
do not exist and evaluate the estimation/distortion trade-off for a thermal
distribution.Comment: 10 pages, 6 figures; published versio
Phase estimation for thermal Gaussian states
We give the optimal bounds on the phase-estimation precision for mixed
Gaussian states in the single-copy and many-copy regimes. Specifically, we
focus on displaced thermal and squeezed thermal states. We find that while for
displaced thermal states an increase in temperature reduces the estimation
fidelity, for squeezed thermal states a larger temperature can enhance the
estimation fidelity. The many-copy optimal bounds are compared with the minimum
variance achieved by three important single-shot measurement strategies. We
show that the single-copy canonical phase measurement does not always attain
the optimal bounds in the many-copy scenario. Adaptive homodyning schemes do
attain the bounds for displaced thermal states, but for squeezed states they
yield fidelities that are insensitive to temperature variations and are,
therefore, sub-optimal. Finally, we find that heterodyne measurements perform
very poorly for pure states but can attain the optimal bounds for sufficiently
mixed states. We apply our results to investigate the influence of losses in an
optical metrology experiment. In the presence of losses squeezed states cease
to provide Heisenberg limited precision and their performance is close to that
of coherent states with the same mean photon number.Comment: typos correcte
Balancing efficiencies by squeezing in realistic eight-port homodyne detection
We address measurements of covariant phase observables (CPOs) by means of
realistic eight-port homodyne detectors. We do not assume equal quantum
efficiencies for the four photodetectors and investigate the conditions under
which the measurement of a CPO may be achieved. We show that balancing the
efficiencies using an additional beam splitter allows us to achieve a CPO at
the price of reducing the overall effective efficiency, and prove that it is
never a smearing of the ideal CPO achievable with unit quantum efficiency. An
alternative strategy based on employing a squeezed vacuum as a parameter field
is also suggested, which allows one to increase the overall efficiency in
comparison to the passive case using only a moderate amount of squeezing. Both
methods are suitable for implementantion with current technology.Comment: 8 pages, 5 figures, revised versio
Laplace deconvolution on the basis of time domain data and its application to Dynamic Contrast Enhanced imaging
In the present paper we consider the problem of Laplace deconvolution with
noisy discrete non-equally spaced observations on a finite time interval. We
propose a new method for Laplace deconvolution which is based on expansions of
the convolution kernel, the unknown function and the observed signal over
Laguerre functions basis (which acts as a surrogate eigenfunction basis of the
Laplace convolution operator) using regression setting. The expansion results
in a small system of linear equations with the matrix of the system being
triangular and Toeplitz. Due to this triangular structure, there is a common
number of terms in the function expansions to control, which is realized
via complexity penalty. The advantage of this methodology is that it leads to
very fast computations, produces no boundary effects due to extension at zero
and cut-off at and provides an estimator with the risk within a logarithmic
factor of the oracle risk. We emphasize that, in the present paper, we consider
the true observational model with possibly nonequispaced observations which are
available on a finite interval of length which appears in many different
contexts, and account for the bias associated with this model (which is not
present when ). The study is motivated by perfusion imaging
using a short injection of contrast agent, a procedure which is applied for
medical assessment of micro-circulation within tissues such as cancerous
tumors. Presence of a tuning parameter allows to choose the most
advantageous time units, so that both the kernel and the unknown right hand
side of the equation are well represented for the deconvolution. The
methodology is illustrated by an extensive simulation study and a real data
example which confirms that the proposed technique is fast, efficient,
accurate, usable from a practical point of view and very competitive.Comment: 36 pages, 9 figures. arXiv admin note: substantial text overlap with
arXiv:1207.223
On the influence of the cosmological constant on gravitational lensing in small systems
The cosmological constant Lambda affects gravitational lensing phenomena. The
contribution of Lambda to the observable angular positions of multiple images
and to their amplification and time delay is here computed through a study in
the weak deflection limit of the equations of motion in the Schwarzschild-de
Sitter metric. Due to Lambda the unresolved images are slightly demagnified,
the radius of the Einstein ring decreases and the time delay increases. The
effect is however negligible for near lenses. In the case of null cosmological
constant, we provide some updated results on lensing by a Schwarzschild black
hole.Comment: 8 pages, 1 figure; v2: extended discussion on the lens equation,
references added, results unchanged, in press on PR
Constrained MaxLik reconstruction of multimode photon distributions
We address the reconstruction of the full photon distribution of multimode
fields generated by seeded parametric down-conversion (PDC). Our scheme is
based on on/off avalanche photodetection assisted by maximum-likelihood
(MaxLik) estimation and does not involve photon counting. We present a novel
constrained MaxLik method that incorporates the request of finite energy to
improve the rate of convergence and, in turn, the overall accuracy of the
reconstruction
Remote state preparation and teleportation in phase space
Continuous variable remote state preparation and teleportation are analyzed
using Wigner functions in phase space. We suggest a remote squeezed state
preparation scheme between two parties sharing an entangled twin beam, where
homodyne detection on one beam is used as a conditional source of squeezing for
the other beam. The scheme works also with noisy measurements, and provide
squeezing if the homodyne quantum efficiency is larger than 50%. Phase space
approach is shown to provide a convenient framework to describe teleportation
as a generalized conditional measurement, and to evaluate relevant degrading
effects, such the finite amount of entanglement, the losses along the line, and
the nonunit quantum efficiency at the sender location.Comment: 2 figures, revised version to appear in J.Opt.
How to measure the wave-function absolute squared of a moving particle by using mirrors
We consider a slow particle with wave function , moving
freely in some direction. A mirror is briefly switched on around a time and
its position is scanned. It is shown that the measured reflection probability
then allows the determination of . Experimentally
available atomic mirrors should make this method applicable to the
center-of-mass wave function of atoms with velocities in the cm/s range.Comment: 4 pages, 5 figure
- …
