30 research outputs found
SPO11-Independent DNA Repair Foci and Their Role in Meiotic Silencing
In mammalian meiotic prophase, the initial steps in repair of SPO11-induced DNA double-strand breaks (DSBs) are required to obtain stable homologous chromosome pairing and synapsis. The X and Y chromosomes pair and synapse only in the short pseudo-autosomal regions. The rest of the chromatin of the sex chromosomes remain unsynapsed, contains persistent meiotic DSBs, and the whole so-called XY body undergoes meiotic sex chromosome inactivation (MSCI). A more general mechanism, named meiotic silencing of unsynapsed chromatin (MSUC), is activated when autosomes fail to synapse. In the absence of SPO11, many chromosomal regions remain unsynapsed, but MSUC takes place only on part of the unsynapsed chromatin. We asked if spontaneous DSBs occur in meiocytes that lack a functional SPO11 protein, and if these might be involved in targeting the MSUC response to part of the unsynapsed chromatin. We generated mice carrying a point mutation that disrupts the predicted catalytic site of SPO11 (Spo11YF/YF), and blocks its DSB-inducing activity. Interestingly, we observed foci of proteins involved in the processing of DNA damage, such as RAD51, DMC1, and RPA, both in Spo11YF/YFand Spo11 knockout meiocytes. These foci preferentially localized to the areas that undergo MSUC and form the so-called pseudo XY body. In SPO11-deficient oocytes, the number
Analysis of Marker-Defined HNSCC Subpopulations Reveals a Dynamic Regulation of Tumor Initiating Properties
Head and neck squamous carcinoma (HNSCC) tumors carry dismal long-term prognosis and the role of tumor initiating cells (TICs) in this cancer is unclear. We investigated in HNSCC xenografts whether specific tumor subpopulations contributed to tumor growth. We used a CFSE-based label retentions assay, CD49f (α6-integrin) surface levels and aldehyde dehydrogenase (ALDH) activity to profile HNSCC subpopulations. The tumorigenic potential of marker-positive and -negative subpopulations was tested in nude (Balb/c nu/nu) and NSG (NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ) mice and chicken embryo chorioallantoic membrane (CAM) assays. Here we identified in HEp3, SQ20b and FaDu HNSCC xenografts a subpopulation of G0/G1-arrested slow-cycling CD49fhigh/ALDH1A1high/H3K4/K27me3low subpopulation (CD49f+) of tumor cells. A strikingly similar CD49fhigh/H3K27me3low subpopulation is also present in primary human HNSCC tumors and metastases. While only sorted CD49fhigh/ALDHhigh, label retaining cells (LRC) proliferated immediately in vivo, with time the CD49flow/ALDHlow, non-LRC (NLRC) tumor cell subpopulations were also able to regain tumorigenic capacity; this was linked to restoration of CD49fhigh/ALDHhigh, label retaining cells. In addition, CD49f is required for HEp3 cell tumorigenicity and to maintain low levels of H3K4/K27me3. CD49f+ cells also displayed reduced expression of the histone-lysine N-methyltransferase EZH2 and ERK1/2phosphorylation. This suggests that although transiently quiescent, their unique chromatin structure is poised for rapid transcriptional activation. CD49f− cells can “reprogram” and also achieve this state eventually. We propose that in HNSCC tumors, epigenetic mechanisms likely driven by CD49f signaling dynamically regulate HNSCC xenograft phenotypic heterogeneity. This allows multiple tumor cell subpopulations to drive tumor growth suggesting that their dynamic nature renders them a “moving target” and their eradication might require more persistent strategies
Stable transmission of reversible modifications: maintenance of epigenetic information through the cell cycle
Even though every cell in a multicellular organism contains the same genes, the differing spatiotemporal expression of these genes determines the eventual phenotype of a cell. This means that each cell type contains a specific epigenetic program that needs to be replicated through cell divisions, along with the genome, in order to maintain cell identity. The stable inheritance of these programs throughout the cell cycle relies on several epigenetic mechanisms. In this review, DNA methylation and histone methylation by specific histone lysine methyltransferases (KMT) and the Polycomb/Trithorax proteins are considered as the primary mediators of epigenetic inheritance. In addition, non-coding RNAs and nuclear organization are implicated in the stable transfer of epigenetic information. Although most epigenetic modifications are reversible in nature, they can be stably maintained by self-recruitment of modifying protein complexes or maintenance of these complexes or structures through the cell cycle
Prostaglandin Receptor EP1 and EP2 Site in Guinea Pig Bladder Urothelium and Lamina Propria
The resilience of a Syrian woman and her family through refugee entrepreneurship in Jordan
This chapter highlights the refugee crisis that erupted in Syria in 2011 and continues to impact Syrian lives within that country and in neighboring countries. It does so by focusing on one Syrian refugee’s story of resilience and survival through entrepreneurship in Amman, Jordan. The chapter discusses her history in her hometown of Homs as a content housewife and mother and how the war led her to lose everything except what mattered most: her family. The chapter also walks us through her life after fleeing to Jordan and narrates her evolving role from wife and mother to breadwinner in a place where she was bounded by state and institutional regulations, yet felt empowered by a generous community
Reduced insulin/insulin-like growth factor signaling decreases translation in Drosophila and mice
Down-regulation of insulin/insulin-like growth factor signaling (IIS) can increase lifespan in C. elegans, Drosophila and mice. In C. elegans, reduced IIS results in down-regulation of translation, which itself can extend lifespan. However, the effect of reduced IIS on translation has yet to be determined in other multicellular organisms. Using two long-lived IIS models, namely Drosophila lacking three insulin-like peptides (dilp2-3,5(-/-)) and mice lacking insulin receptor substrate 1 (Irs1(-/-)), and two independent translation assays, polysome profiling and radiolabeled amino acid incorporation, we show that reduced IIS lowers translation in these organisms. In Drosophila, reduced IIS decreased polysome levels in fat body and gut, but reduced the rate of protein synthesis only in the fat body. Reduced IIS in mice decreased protein synthesis rate only in skeletal muscle, without reducing polysomes in any tissue. This lowered translation in muscle was independent of Irs1 loss in the muscle itself, but a secondary effect of Irs1 loss in the liver. In conclusion, down-regulation of translation is an evolutionarily conserved response to reduced IIS, but the tissues in which it occurs can vary between organisms. Furthermore, the mechanisms underlying lowered translation may differ in mice, possibly associated with the complexity of the regulatory processes
Cooperating, congenital neutropenia–associated Csf3r and Runx1 mutations activate pro-inflammatory signaling and inhibit myeloid differentiation of mouse HSPCs
Patients with the pre-leukemia bone marrow failure syndrome called severe congenital neutropenia (CN) have an approximately 15% risk of developing acute myeloid leukemia (AML; called here CN/AML). Most CN/AML patients co-acquire CSF3R and RUNX1 mutations, which play cooperative roles in the development of AML. To establish an in vitro model of leukemogenesis, we utilized bone marrow li
