324 research outputs found
Capturing the essence of folding and functions of biomolecules using Coarse-Grained Models
The distances over which biological molecules and their complexes can
function range from a few nanometres, in the case of folded structures, to
millimetres, for example during chromosome organization. Describing phenomena
that cover such diverse length, and also time scales, requires models that
capture the underlying physics for the particular length scale of interest.
Theoretical ideas, in particular, concepts from polymer physics, have guided
the development of coarse-grained models to study folding of DNA, RNA, and
proteins. More recently, such models and their variants have been applied to
the functions of biological nanomachines. Simulations using coarse-grained
models are now poised to address a wide range of problems in biology.Comment: 37 pages, 8 figure
On group strategy-proof mechanisms for a many-to-one matching model
For the many-to-one matching model in which firms have substitutable and quota q-separable preferences over subsets of workers we show that the workers-optimal stable mechanism is group strategy-proof for the workers. In order to prove this result, we also show that under this domain of preferences (which contains the domain of responsive preferences of the college admissions problem) the workers-optimal stable matching is weakly Pareto optimal for the workers and the Blocking Lemma holds as well. We exhibit an example showing that none of these three results remain true if the preferences of firms are substitutable but not quota q-separable.The work of R. Martínez, A. Neme, and J. Oviedo is partially supported by Research Grant 319502 from the Universidad Nacional
de San Luis (Argentina). The work of J. Massó is partially supported by Research Grants BEC2002-2130 from the Dirección General de Investigación Científica y Técnica (Spanish Ministry of Science and
Technology) and 2001SGR-00162 from the Departament d’Universitats, Recerca i Societat de la Informació (Generalitat de Catalunya)
Genomics meets HIV-1
Genomics is now a core element in the effort to develop a vaccine against HIV-1. Thanks to unprecedented progress in high-throughput genotyping and sequencing, in knowledge about genetic variation in humans, and in evolutionary genomics, it is finally possible to systematically search the genome for common genetic variants that influence the human response to HIV-1. The identification of such variants would help to determine which aspects of the response to the virus are the most promising targets for intervention. However, a key obstacle to progress remains the scarcity of appropriate human cohorts available for genomic research
Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set
We report a measurement of the bottom-strange meson mixing phase \beta_s
using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays
in which the quark-flavor content of the bottom-strange meson is identified at
production. This measurement uses the full data set of proton-antiproton
collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment
at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity.
We report confidence regions in the two-dimensional space of \beta_s and the
B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2,
-1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in
agreement with the standard model expectation. Assuming the standard model
value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +-
0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +-
0.009 (syst) ps, which are consistent and competitive with determinations by
other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012
Toxoplasma gondii Clonal Strains All Inhibit STAT1 Transcriptional Activity but Polymorphic Effectors Differentially Modulate IFN gamma Induced Gene Expression and STAT1 Phosphorylation
Host defense against the parasite Toxoplasma gondii requires the cytokine interferon-gamma (IFNγ). However, Toxoplasma inhibits the host cell transcriptional response to IFNγ, which is thought to allow the parasite to establish a chronic infection. It is not known whether all strains of Toxoplasma block IFNγ-responsive transcription equally and whether this inhibition occurs solely through the modulation of STAT1 activity or whether other transcription factors are involved. We find that strains from three North American/European clonal lineages of Toxoplasma, types I, II, and III, can differentially modulate specific aspects of IFNγ signaling through the polymorphic effector proteins ROP16 and GRA15. STAT1 tyrosine phosphorylation is activated in the absence of IFNγ by the Toxoplasma kinase ROP16, but this ROP16-activated STAT1 is not transcriptionally active. Many genes induced by STAT1 can also be controlled by other transcription factors and therefore using these genes as specific readouts to determine Toxoplasma inhibition of STAT1 activity might be inappropriate. Indeed, GRA15 and ROP16 modulate the expression of subsets of IFNγ responsive genes through activation of the NF-κB/IRF1 and STAT3/6 transcription factors, respectively. However, using a stable STAT1-specific reporter cell line we show that strains from the type I, II, and III clonal lineages equally inhibit STAT1 transcriptional activity. Furthermore, all three of the clonal lineages significantly inhibit global IFNγ induced gene expression
Mechanisms and therapeutic applications of electromagnetic therapy in Parkinson's disease
© 2015 Vadalà et al. Electromagnetic therapy is a non-invasive and safe approach for the management of several pathological conditions including neurodegenerative diseases. Parkinson's disease is a neurodegenerative pathology caused by abnormal degeneration of dopaminergic neurons in the ventral tegmental area and substantia nigra pars compacta in the midbrain resulting in damage to the basal ganglia. Electromagnetic therapy has been extensively used in the clinical setting in the form of transcranial magnetic stimulation, repetitive transcranial magnetic stimulation, high-frequency transcranial magnetic stimulation and pulsed electromagnetic field therapy which can also be used in the domestic setting. In this review, we discuss the mechanisms and therapeutic applications of electromagnetic therapy to alleviate motor and non-motor deficits that characterize Parkinson's disease
High resolution imaging reveals heterogeneity in chromatin states between cells that is not inherited through cell division
BACKGROUND: Genomes of eukaryotes exist as chromatin, and it is known that different chromatin states can influence gene regulation. Chromatin is not a static structure, but is known to be dynamic and vary between cells. In order to monitor the organisation of chromatin in live cells we have engineered fluorescent fusion proteins which recognize specific operator sequences to tag pairs of syntenic gene loci. The separation of these loci was then tracked in three dimensions over time using fluorescence microscopy. RESULTS: We established a work flow for measuring the distance between two fluorescently tagged, syntenic gene loci with a mean measurement error of 63 nm. In general, physical separation was observed to increase with increasing genomic separations. However, the extent to which chromatin is compressed varies for different genomic regions. No correlation was observed between compaction and the distribution of chromatin markers from genomic datasets or with contacts identified using capture based approaches. Variation in spatial separation was also observed within cells over time and between cells. Differences in the conformation of individual loci can persist for minutes in individual cells. Separation of reporter loci was found to be similar in related and unrelated daughter cell pairs. CONCLUSIONS: The directly observed physical separation of reporter loci in live cells is highly dynamic both over time and from cell to cell. However, consistent differences in separation are observed over some chromosomal regions that do not correlate with factors known to influence chromatin states. We conclude that as yet unidentified parameters influence chromatin configuration. We also find that while heterogeneity in chromatin states can be maintained for minutes between cells, it is not inherited through cell division. This may contribute to cell-to-cell transcriptional heterogeneity. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12860-016-0111-y) contains supplementary material, which is available to authorized users
Higher levels of glutamate in the associative-striatum of subjects with prodromal symptoms of schizophrenia and patients with first-episode psychosis
The glutamatergic and dopaminergic systems are thought to be involved in the pathophysiology of schizophrenia. Their interaction has been widely documented and may have a role in the neurobiological basis of the disease. The aim of this study was to compare, using proton magnetic resonance spectroscopy (1H-MRS), glutamate levels in the precommissural dorsal-caudate (a dopamine-rich region) and the cerebellar cortex (negligible for dopamine) in the following: (1) 18 antipsychotic-naïve subjects with prodromal symptoms and considered to be at ultra high-risk for schizophrenia (UHR), (2) 18 antipsychotic-naïve first- episode psychosis patients (FEP), and (3) 40 age- and sex- matched healthy controls. All subjects underwent a 1H-MRS study using a 3Tesla scanner. Glutamate levels were quantified and corrected for the proportion of cerebrospinal fluid and percentage of gray matter in the voxel. The UHR and FEP groups showed higher levels of glutamate than controls, without differences between UHR and FEP. In the cerebellum, no differences were seen between the three groups. The higher glutamate level in the precommissural dorsal-caudate and not in the cerebellum of UHR and FEP suggests that a high glutamate level (a) precedes the onset of schizophrenia, and (b) is present in a dopamine-rich region previously implicated in the pathophysiology of schizophrenia.peer-reviewe
Design and Effectiveness of a Required Pre-Clinical Simulation-based Curriculum for Fundamental Clinical Skills and Procedures
For more than 20 years, medical literature has increasingly documented the need for students to learn, practice and demonstrate competence in basic clinical knowledge and skills. In 2001, the Louisiana State University Health Science Centers (LSUHSC) School of Medicine – New Orleans replaced its traditional Introduction in to Clinical Medicine (ICM) course with the Science and Practice of Medicine (SPM) course. The main component within the SPM course is the Clinical Skills Lab (CSL). The CSL teaches 30 plus skills to all pre-clinical medical students (Years 1 and 2). Since 2002, an annual longitudinal evaluation questionnaire was distributed to all medical students targeting the skills taught in the CSL. Students were asked to rate their self- confidence (Dreyfus and Likert-type) and estimate the number of times each clinical skill was performed (clinically/non-clinically). Of the 30 plus skills taught, 8 were selected for further evaluation. An analysis was performed on the eight skills selected to determine the effectiveness of the CSL. All students that participated in the CSL reported a significant improvement in self-confidence and in number performed in the clinically/non-clinically setting when compared to students that did not experience the CSL. For example, without CSL training, the percentage of students reported at the end of their second year self-perceived expertise as “novice” ranged from 21.4% (CPR) to 84.7% (GU catheterization). Students who completed the two-years CSL, only 7.8% rated their self-perceived expertise at the end of the second year as “novice” and 18.8% for GU catheterization. The CSL design is not to replace real clinical patient experiences. It's to provide early exposure, medial knowledge, professionalism and opportunity to practice skills in a patient free environment
- …
