793 research outputs found
Topologically Protected Quantum State Transfer in a Chiral Spin Liquid
Topology plays a central role in ensuring the robustness of a wide variety of
physical phenomena. Notable examples range from the robust current carrying
edge states associated with the quantum Hall and the quantum spin Hall effects
to proposals involving topologically protected quantum memory and quantum logic
operations. Here, we propose and analyze a topologically protected channel for
the transfer of quantum states between remote quantum nodes. In our approach,
state transfer is mediated by the edge mode of a chiral spin liquid. We
demonstrate that the proposed method is intrinsically robust to realistic
imperfections associated with disorder and decoherence. Possible experimental
implementations and applications to the detection and characterization of spin
liquid phases are discussed.Comment: 14 pages, 7 figure
Coordinated optimization of visual cortical maps (II) Numerical studies
It is an attractive hypothesis that the spatial structure of visual cortical
architecture can be explained by the coordinated optimization of multiple
visual cortical maps representing orientation preference (OP), ocular dominance
(OD), spatial frequency, or direction preference. In part (I) of this study we
defined a class of analytically tractable coordinated optimization models and
solved representative examples in which a spatially complex organization of the
orientation preference map is induced by inter-map interactions. We found that
attractor solutions near symmetry breaking threshold predict a highly ordered
map layout and require a substantial OD bias for OP pinwheel stabilization.
Here we examine in numerical simulations whether such models exhibit
biologically more realistic spatially irregular solutions at a finite distance
from threshold and when transients towards attractor states are considered. We
also examine whether model behavior qualitatively changes when the spatial
periodicities of the two maps are detuned and when considering more than 2
feature dimensions. Our numerical results support the view that neither minimal
energy states nor intermediate transient states of our coordinated optimization
models successfully explain the spatially irregular architecture of the visual
cortex. We discuss several alternative scenarios and additional factors that
may improve the agreement between model solutions and biological observations.Comment: 55 pages, 11 figures. arXiv admin note: substantial text overlap with
arXiv:1102.335
X-Ray Spectroscopy of Stars
(abridged) Non-degenerate stars of essentially all spectral classes are soft
X-ray sources. Low-mass stars on the cooler part of the main sequence and their
pre-main sequence predecessors define the dominant stellar population in the
galaxy by number. Their X-ray spectra are reminiscent, in the broadest sense,
of X-ray spectra from the solar corona. X-ray emission from cool stars is
indeed ascribed to magnetically trapped hot gas analogous to the solar coronal
plasma. Coronal structure, its thermal stratification and geometric extent can
be interpreted based on various spectral diagnostics. New features have been
identified in pre-main sequence stars; some of these may be related to
accretion shocks on the stellar surface, fluorescence on circumstellar disks
due to X-ray irradiation, or shock heating in stellar outflows. Massive, hot
stars clearly dominate the interaction with the galactic interstellar medium:
they are the main sources of ionizing radiation, mechanical energy and chemical
enrichment in galaxies. High-energy emission permits to probe some of the most
important processes at work in these stars, and put constraints on their most
peculiar feature: the stellar wind. Here, we review recent advances in our
understanding of cool and hot stars through the study of X-ray spectra, in
particular high-resolution spectra now available from XMM-Newton and Chandra.
We address issues related to coronal structure, flares, the composition of
coronal plasma, X-ray production in accretion streams and outflows, X-rays from
single OB-type stars, massive binaries, magnetic hot objects and evolved WR
stars.Comment: accepted for Astron. Astrophys. Rev., 98 journal pages, 30 figures
(partly multiple); some corrections made after proof stag
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
Whey protein reduces early life weight gain in mice fed a high-fat diet.
An increasing number of studies indicate that dairy products, including whey protein, alleviate several disorders of the metabolic syndrome. Here, we investigated the effects of whey protein isolate (whey) in mice fed a high-fat diet hypothesising that the metabolic effects of whey would be associated with changes in the gut microbiota composition. Five-week-old male C57BL/6 mice were fed a high-fat diet ad libitum for 14 weeks with the protein source being either whey or casein. Faeces were collected at week 0, 7, and 13 and the fecal microbiota was analysed by denaturing gradient gel electrophoresis analyses of PCR-derived 16S rRNA gene (V3-region) amplicons. At the end of the study, plasma samples were collected and assayed for glucose, insulin and lipids. Whey significantly reduced body weight gain during the first four weeks of the study compared with casein (P<0.001-0.05). Hereafter weight gain was similar resulting in a 15% lower final body weight in the whey group relative to casein (34.0±1.0 g vs. 40.2±1.3 g, P<0.001). Food intake was unaffected by protein source throughout the study period. Fasting insulin was lower in the whey group (P<0.01) and glucose clearance was improved after an oral glucose challenge (P<0.05). Plasma cholesterol was lowered by whey compared to casein (P<0.001). The composition of the fecal microbiota differed between high- and low-fat groups at 13 weeks (P<0.05) whereas no difference was seen between whey and casein. In conclusion, whey initially reduced weight gain in young C57BL/6 mice fed a high-fat diet compared to casein. Although the effect on weight gain ceased, whey alleviated glucose intolerance, improved insulin sensitivity and reduced plasma cholesterol. These findings could not be explained by changes in food intake or gut microbiota composition. Further studies are needed to clarify the mechanisms behind the metabolic effects of whey
Determinants of quality of life in children with psychiatric disorders
Objective: To assess factors that, in addition to childhood psychopathology, are associated with Quality of Life (QoL) in children with psychiatric problems. Methods: In a referred sample of 252 8 to 18-year-olds, information concerning QoL, psychopathology and a broad range of child, parent, and family/ social network factors was obtained from children, parents, teachers and clinicians. Results: Poor child, parent, and clinician reported QoL was associated with child psychopathology, but given the presence of psychopathology, also with child factors, such as low self-esteem, and poor social skills, and family/social network factors, such as poor family functioning, and poor social support. In multiple linear regression analyses the importance of parent factors, such as parenting stress, was almost negligible. Conclusion: To increase QoL of children with psychiatric problems, treatment of symptoms is important, but outcome might improve if treatment is also focussed on other factors that may affect QoL. Results are discussed in relation to current treatment programs. © Springer 2005
Identifying practical indicators of biodiversity for stand-level management of plantation forests
Frequent mechanical stress suppresses proliferation of mesenchymal stem cells from human bone marrow without loss of multipotency
Mounting evidence indicated that human mesenchymal stem cells (hMSCs) are responsive not only
to biochemical but also to physical cues, such as substrate topography and stiffness. To simulate the
dynamic structures of extracellular environments of the marrow in vivo, we designed a novel surrogate
substrate for marrow derived hMSCs based on physically cross-linked hydrogels whose elasticity can
be adopted dynamically by chemical stimuli. Under frequent mechanical stress, hMSCs grown on
our hydrogel substrates maintain the expression of STRO-1 over 20 d, irrespective of the substrate
elasticity. On exposure to the corresponding induction media, these cultured hMSCs can undergo
adipogenesis and osteogenesis without requiring cell transfer onto other substrates. Moreover,
we demonstrated that our surrogate substrate suppresses the proliferation of hMSCs by up to 90%
without any loss of multiple lineage potential by changing the substrate elasticity every 2nd days.
Such “dynamic in vitro niche” can be used not only for a better understanding of the role of dynamic
mechanical stresses on the fate of hMSCs but also for the synchronized differentiation of adult stem
cells to a specific lineage
DNA demethylases target promoter transposable elements to positively regulate stress responsive genes in Arabidopsis
© 2014 Le et al. Background: DNA demethylases regulate DNA methylation levels in eukaryotes. Arabidopsis encodes four DNA demethylases, DEMETER (DME), REPRESSOR OF SILENCING 1 (ROS1), DEMETER-LIKE 2 (DML2), and DML3. While DME is involved in maternal specific gene expression during seed development, the biological function of the remaining DNA demethylases remains unclear. Results: We show that ROS1, DML2, and DML3 play a role in fungal disease resistance in Arabidopsis. A triple DNA demethylase mutant, rdd (ros1 dml2 dml3), shows increased susceptibility to the fungal pathogen Fusarium oxysporum. We identify 348 genes differentially expressed in rdd relative to wild type, and a significant proportion of these genes are downregulated in rdd and have functions in stress response, suggesting that DNA demethylases maintain or positively regulate the expression of stress response genes required for F. oxysporum resistance. The rdd-downregulated stress response genes are enriched for short transposable element sequences in their promoters. Many of these transposable elements and their surrounding sequences show localized DNA methylation changes in rdd, and a general reduction in CHH methylation, suggesting that RNA-directed DNA methylation (RdDM), responsible for CHH methylation, may participate in DNA demethylase-mediated regulation of stress response genes. Many of the rdd-downregulated stress response genes are downregulated in the RdDM mutants nrpd1 and nrpe1, and the RdDM mutants nrpe1 and ago4 show enhanced susceptibility to F. oxysporum infection. Conclusions: Our results suggest that a primary function of DNA demethylases in plants is to regulate the expression of stress response genes by targeting promoter transposable element sequences
The oyster genome reveals stress adaptation and complexity of shell formation
The Pacific oyster Crassostrea gigas belongs to one of the most species-rich but genomically poorly explored phyla, the Mollusca. Here we report the sequencing and assembly of the oyster genome using short reads and a fosmid-pooling strategy, along with transcriptomes of development and stress response and the proteome of the shell. The oyster genome is highly polymorphic and rich in repetitive sequences, with some transposable elements still actively shaping variation. Transcriptome studies reveal an extensive set of genes responding to environmental stress. The expansion of genes coding for heat shock protein 70 and inhibitors of apoptosis is probably central to the oyster's adaptation to sessile life in the highly stressful intertidal zone. Our analyses also show that shell formation in molluscs is more complex than currently understood and involves extensive participation of cells and their exosomes. The oyster genome sequence fills a void in our understanding of the Lophotrochozoa. © 2012 Macmillan Publishers Limited. All rights reserved
- …
