8,429 research outputs found

    Rapid Spatial Mapping of Focused Ultrasound Fields Using a Planar Fabry-Pérot Sensor

    Get PDF
    Measurement of high acoustic pressures is necessary in order to fully characterise clinical high-intensity focused ultrasound (HIFU) fields, and for accurate validation of computational models of ultrasound propagation. However, many existing measurement devices are unable to withstand the extreme pressures generated in these fields, and those that can often exhibit low sensitivity. Here, a planar Fabry-Pérot interferometer with hard dielectric mirrors and spacer was designed, fabricated, and characterised and its suitability for measurement of nonlinear focused ultrasound fields was investigated. The noise equivalent pressure of the scanning system scaled with the adjustable pressure detection range between 49 kPa for pressures up to 8 MPa and 152 kPa for measurements up to 25 MPa, over a 125 MHz measurement bandwidth. Measurements of the frequency response of the sensor showed that it varied by less than 3 dB in the range 1 - 62 MHz. The effective element size of the sensor was 65 μm and waveforms were acquired at a rate of 200 Hz. The device was used to measure the acoustic pressure in the field of a 1.1 MHz single element spherically focused bowl transducer. Measurements of the acoustic field at low pressures compared well with measurements made using a PVDF needle hydrophone. At high pressures, the measured peak focal pressures agreed well with the focal pressure modelled using the Khokhlov-Zabolotskaya-Kuznetsov equation. Maximum peak positive pressures of 25 MPa, and peak negative pressures of 12 MPa were measured, and planar field scans were acquired in scan times on the order of 1 minute. The properties of the sensor and scanning system are well suited to measurement of nonlinear focused ultrasound fields, in both the focal region and the low pressure peripheral regions. The fast acquisition speed of the system and its low noise equivalent pressure are advantageous, and with further development of the sensor, it has potential in application to HIFU metrology

    Stellar Disk Truncations: Where do we stand ?

    Full text link
    In the light of several recent developments we revisit the phenomenon of galactic stellar disk truncations. Even 25 years since the first paper on outer breaks in the radial light profiles of spiral galaxies, their origin is still unclear. The two most promising explanations are that these 'outer edges' either trace the maximum angular momentum during the galaxy formation epoch, or are associated with global star formation thresholds. Depending on their true physical nature, these outer edges may represent an improved size characteristic (e.g., as compared to D_25) and might contain fossil evidence imprinted by the galaxy formation and evolutionary history. We will address several observational aspects of disk truncations: their existence, not only in normal HSB galaxies, but also in LSB and even dwarf galaxies; their detailed shape, not sharp cut-offs as thought before, but in fact demarcating the start of a region with a steeper exponential distribution of starlight; their possible association with bars; as well as problems related to the line-of-sight integration for edge-on galaxies (the main targets for truncation searches so far). Taken together, these observations currently favour the star-formation threshold model, but more work is necessary to implement the truncations as adequate parameters characterising galactic disks.Comment: LaTeX, 10 pages, 6 figures, presented at the "Penetrating Bars through Masks of Cosmic Dust" conference in South Africa, proceedings published by Kluwer, and edited by Block, D.L., Freeman, K.C., Puerari, I., & Groess, R; v3 to match published versio

    Laser-Stimulated Fluorescence in Paleontology

    Get PDF
    Fluorescence using ultraviolet (UV) light has seen increased use as a tool in paleontology over the last decade. Laser-stimulated fluorescence (LSF) is a next generation technique that is emerging as a way to fluoresce paleontological specimens that remain dark under typical UV. A laser’s ability to concentrate very high flux rates both at the macroscopic and microscopic levels results in specimens fluorescing in ways a standard UV bulb cannot induce. Presented here are five paleontological case histories that illustrate the technique across a broad range of specimens and scales. Novel uses such as back-lighting opaque specimens to reveal detail and detection of specimens completely obscured by matrix are highlighted in these examples. The recent cost reductions in medium-power short wavelength lasers and use of standard photographic filters has now made this technique widely accessible to researchers. This technology has the potential to automate multiple aspects of paleontology, including preparation and sorting of microfossils. This represents a highly cost-effective way to address paleontology's preparatory bottleneck.published_or_final_versio

    The transcriptome of the novel dinoflagellate Oxyrrhis marina (Alveolata: Dinophyceae): response to salinity examined by 454 sequencing

    Get PDF
    This is the final version of the article. Available from [BioMed Central via the DOI in this record.BACKGROUND: The heterotrophic dinoflagellate Oxyrrhis marina is increasingly studied in experimental, ecological and evolutionary contexts. Its basal phylogenetic position within the dinoflagellates make O. marina useful for understanding the origin of numerous unusual features of the dinoflagellate lineage; its broad distribution has lent O. marina to the study of protist biogeography; and nutritive flexibility and eurytopy have made it a common lab rat for the investigation of physiological responses of marine heterotrophic flagellates. Nevertheless, genome-scale resources for O. marina are scarce. Here we present a 454-based transcriptome survey for this organism. In addition, we assess sequence read abundance, as a proxy for gene expression, in response to salinity, an environmental factor potentially important in determining O. marina spatial distributions. RESULTS: Sequencing generated ~57 Mbp of data which assembled into 7, 398 contigs. Approximately 24% of contigs were nominally identified by BLAST. A further clustering of contigs (at ≥ 90% identity) revealed 164 transcript variant clusters, the largest of which (Phosphoribosylaminoimidazole-succinocarboxamide synthase) was composed of 28 variants displaying predominately synonymous variation. In a genomic context, a sample of 5 different genes were demonstrated to occur as tandem repeats, separated by short (~200-340 bp) inter-genic regions. For HSP90 several intergenic variants were detected suggesting a potentially complex genomic arrangement. In response to salinity, analysis of 454 read abundance highlighted 9 and 20 genes over or under expressed at 50 PSU, respectively. However, 454 read abundance and subsequent qPCR validation did not correlate well - suggesting that measures of gene expression via ad hoc analysis of sequence read abundance require careful interpretation. CONCLUSION: Here we indicate that tandem gene arrangements and the occurrence of multiple transcribed gene variants are common and indicate potentially complex genomic arrangements in O. marina. Comparison of the reported data set with existing O. marina and other dinoflagellates ESTs indicates little sequence overlap likely as a result of the relatively limited extent of genome scale sequence data currently available for the dinoflagellates. This is one of the first 454-based transcriptome surveys of an ancestral dinoflagellate taxon and will undoubtedly prove useful for future comparative studies aimed at reconstructing the origin of novel features of the dinoflagellates.This work was supported by a NERC grant (NE/F005237/1) awarded to PCW, DJSM, and CDL. We would like to thank Dr Margret Hughes of the Liverpool CGR for conducting 454 sequencing, and Dr Kevin Ashelford for invaluable scripting and bioinformatics support

    Some Field Theoretic Issues Regarding the Chiral Magnetic Effect

    Full text link
    In this paper, we shall address some field theoretic issues regarding the chiral magnetic effect. The general structure of the magnetic current consistent with the electromagnetic gauge invariance is obtained and the impact of the infrared divergence is examined. Some subtleties on the relation between the chiral magnetic effect and the axial anomaly are clarified through a careful examination of the infrared limit of the relevant thermal diagrams.Comment: 19 pages, 4 figures in Latex. Typos fixed, version accepted to be published in JHE

    A Plasmid-Transposon Hybrid Mutagenesis System Effective in a Broad Range of Enterobacteria.

    Get PDF
    Random transposon mutagenesis is a powerful technique used to generate libraries of genetic insertions in many different bacterial strains. Here we develop a system facilitating random transposon mutagenesis in a range of different Gram-negative bacterial strains, including Pectobacterium atrosepticum, Citrobacter rodentium, Serratia sp. ATCC39006, Serratia plymuthica, Dickeya dadantii, and many more. Transposon mutagenesis was optimized in each of these strains and three studies are presented to show the efficacy of this system. Firstly, the important agricultural pathogen D. dadantii was mutagenized. Two mutants that showed reduced protease production and one mutant producing the previously cryptic pigment, indigoidine, were identified and characterized. Secondly, the enterobacterium, Serratia sp. ATCC39006 was mutagenized and mutants incapable of producing gas vesicles, proteinaceous intracellular organelles, were identified. One of these contained a β-galactosidase transcriptional fusion within the gene gvpA1, essential for gas vesicle production. Finally, the system was used to mutate the biosynthetic gene clusters of the antifungal, anti-oomycete and anticancer polyketide, oocydin A, in the plant-associated enterobacterium, Dickeya solani MK10. The mutagenesis system was developed to allow easy identification of transposon insertion sites by sequencing, after facile generation of a replicon encompassing the transposon and adjacent DNA, post-excision. Furthermore, the system can also create transcriptional fusions with either β-galactosidase or β-glucuronidase as reporters, and exploits a variety of drug resistance markers so that multiple selectable fusions can be generated in a single strain. This system of various transposons has wide utility and can be combined in many different ways.The authors would like to acknowledge several funding sources. D. Smith was supported by a PhD studentship from the BBSRC. Work in the MW lab is supported by the BBSRC (grants BB/G015171/1 and BB/M019411/1). K. Roberts was funded by an MRC studentship. R. Monson and the Salmond lab were supported by grants from the BBSRC (Grant No Provisional BB/K001833/1). M.A. Matilla was supported by the EU Marie-Curie Intra-European Fellowship for Career Development (FP7-PEOPLE-2011-IEF), grant number 298003. B. Richardson was supported by a Harry Smith vacation studentship from the SGM, UK. The authors would also like to thank Ray Chai for careful reading and comments on this manuscript. Alison Drew provided technical support. Work with plant pathogens was carried out under DEFRA licence No. 50864/197900/1.This is the final version of the article. It was first available from Frontiers via http://dx.doi.org/10.3389/fmicb.2015.0144

    Towards a large-scale quantum simulator on diamond surface at room temperature

    Full text link
    Strongly-correlated quantum many-body systems exhibits a variety of exotic phases with long-range quantum correlations, such as spin liquids and supersolids. Despite the rapid increase in computational power of modern computers, the numerical simulation of these complex systems becomes intractable even for a few dozens of particles. Feynman's idea of quantum simulators offers an innovative way to bypass this computational barrier. However, the proposed realizations of such devices either require very low temperatures (ultracold gases in optical lattices, trapped ions, superconducting devices) and considerable technological effort, or are extremely hard to scale in practice (NMR, linear optics). In this work, we propose a new architecture for a scalable quantum simulator that can operate at room temperature. It consists of strongly-interacting nuclear spins attached to the diamond surface by its direct chemical treatment, or by means of a functionalized graphene sheet. The initialization, control and read-out of this quantum simulator can be accomplished with nitrogen-vacancy centers implanted in diamond. The system can be engineered to simulate a wide variety of interesting strongly-correlated models with long-range dipole-dipole interactions. Due to the superior coherence time of nuclear spins and nitrogen-vacancy centers in diamond, our proposal offers new opportunities towards large-scale quantum simulation at room temperatures

    Natural variation in immune responses to neonatal mycobacterium bovis bacillus calmette-guerin (BCG) vaccination in a cohort of Gambian infants

    Get PDF
    Background There is a need for new vaccines for tuberculosis (TB) that protect against adult pulmonary disease in regions where BCG is not effective. However, BCG could remain integral to TB control programmes because neonatal BCG protects against disseminated forms of childhood TB and many new vaccines rely on BCG to prime immunity or are recombinant strains of BCG. Interferon-gamma (IFN-) is required for immunity to mycobacteria and used as a marker of immunity when new vaccines are tested. Although BCG is widely given to neonates IFN- responses to BCG in this age group are poorly described. Characterisation of IFN- responses to BCG is required for interpretation of vaccine immunogenicity study data where BCG is part of the vaccination strategy. Methodology/Principal Findings 236 healthy Gambian babies were vaccinated with M. bovis BCG at birth. IFN-, interleukin (IL)-5 and IL-13 responses to purified protein derivative (PPD), killed Mycobacterium tuberculosis (KMTB), M. tuberculosis short term culture filtrate (STCF) and M. bovis BCG antigen 85 complex (Ag85) were measured in a whole blood assay two months after vaccination. Cytokine responses varied up to 10 log-fold within this population. The majority of infants (89-98% depending on the antigen) made IFN- responses and there was significant correlation between IFN- responses to the different mycobacterial antigens (Spearman’s coefficient ranged from 0.340 to 0.675, p=10-6-10-22). IL-13 and IL-5 responses were generally low and there were more non-responders (33-75%) for these cytokines. Nonetheless, significant correlations were observed for IL-13 and IL-5 responses to different mycobacterial antigens Conclusions/Significance Cytokine responses to mycobacterial antigens in BCG-vaccinated infants are heterogeneous and there is significant inter-individual variation. Further studies in large populations of infants are required to identify the factors that determine variation in IFN- responses
    corecore