99 research outputs found

    Chlamydia trachomatis Infection and Anti-Hsp60 Immunity: The Two Sides of the Coin

    Get PDF
    Chlamydia trachomatis (CT) infection is one of the most common causes of reproductive tract diseases and infertility. CT-Hsp60 is synthesized during infection and is released in the bloodstream. As a consequence, immune cells will produce anti-CT-Hsp60 antibodies. Hsp60, a ubiquitous and evolutionarily conserved chaperonin, is normally sequestered inside the cell, particularly into mitochondria. However, upon cell stress, as well as during carcinogenesis, the chaperonin becomes exposed on the cell surface (sf-Hsp60) and/or is secreted from cells into the extracellular space and circulation. Reports in the literature on circulating Hsp and anti-Hsp antibodies are in many cases short on details about Hsp60 concentrations, and about the specificity spectra of the antibodies, their titers, and their true, direct, pathogenetic effects. Thus, more studies are still needed to obtain a definitive picture on these matters. Nevertheless, the information already available indicates that the concurrence of persistent CT infection and appearance of sf-Hsp60 can promote an autoimmune aggression towards stressed cells and the development of diseases such as autoimmune arthritis, multiple sclerosis, atherosclerosis, vasculitis, diabetes, and thyroiditis, among others. At the same time, immunocomplexes composed of anti-CT-Hsp60 antibodies and circulating Hsp60 (both CT and human) may form deposits in several anatomical locations, e.g., at the glomerular basal membrane. The opposite side of the coin is that pre-tumor and tumor cells with sf-Hsp60 can be destroyed with participation of the anti-Hsp60 antibody, thus stopping cancer progression before it is even noticed by the patient or physician

    Search for dark matter produced in association with a Higgs boson decaying to a pair of bottom quarks in proton-proton collisions at root s=13TeV

    Get PDF
    A search for dark matter produced in association with a Higgs boson decaying to a pair of bottom quarks is performed in proton-proton collisions at a center-of-mass energy of 13 TeV collected with the CMS detector at the LHC. The analyzed data sample corresponds to an integrated luminosity of 35.9 fb(-1). The signal is characterized by a large missing transverse momentum recoiling against a bottom quark-antiquark system that has a large Lorentz boost. The number of events observed in the data is consistent with the standard model background prediction. Results are interpreted in terms of limits both on parameters of the type-2 two-Higgs doublet model extended by an additional light pseudoscalar boson a (2HDM+a) and on parameters of a baryonic Z simplified model. The 2HDM+a model is tested experimentally for the first time. For the baryonic Z model, the presented results constitute the most stringent constraints to date.Peer reviewe

    Measurements of production cross sections of polarized same-sign W boson pairs in association with two jets in proton-proton collisions at √<i>s</i>=13 TeV

    Get PDF

    CMS pythia  8 colour reconnection tunes based on underlying-event data

    Get PDF
    A preprint version of the article is available at arXiv (https://arxiv.org/abs/2205.02905).Copyright © CERN for the benefit of the CMS collaboration 2023. New sets of parameter tunes for two of the colour reconnection models, quantum chromodynamics-inspired and gluon-move, implemented in the PYTHIA 8 event generator, are obtained based on the default CMS PYTHIA 8 underlying-event tune, CP5. Measurements sensitive to the underlying event performed by the CMS experiment at centre-of-mass energies s√=7 and 13TeV , and by the CDF experiment at 1.96TeV are used to constrain the parameters of colour reconnection models and multiple-parton interactions simultaneously. The new colour reconnection tunes are compared with various measurements at 1.96, 7, 8, and 13TeV including measurements of the underlying-event, strange-particle multiplicities, jet substructure observables, jet shapes, and colour flow in top quark pair (tt¯) events. The new tunes are also used to estimate the uncertainty related to colour reconnection modelling in the top quark mass measurement using the decay products of tt¯ events in the semileptonic channel at 13TeV.SCOAP3

    Measurements of Higgs boson production in the decay channel with a pair of ττ leptons in proton-proton collisions at s\sqrt{s} = 13 TeV

    Get PDF
    A preprint version of the article is available at arXiv:2204.12957v2 [hep-ex], https://arxiv.org/abs/2204.12957v2 . Comments: Replaced with the published version. Added the journal reference and the DOI. All the figures and tables, including additional supplementary figures and tables, can be found at https://cms-results.web.cern.ch/cms-results/public-results/publications/HIG-19-010 (CMS Public Pages). Report number: CMS-HIG-19-010, CERN-EP-2022-027.Measurements of Higgs boson production, where the Higgs boson decays into a pair of τ leptons, are presented, using a sample of proton-proton collisions collected with the CMS experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb^{−1}. Three analyses are presented. Two are targeting Higgs boson production via gluon fusion and vector boson fusion: a neural network based analysis and an analysis based on an event categorization optimized on the ratio of signal over background events. These are complemented by an analysis targeting vector boson associated Higgs boson production. Results are presented in the form of signal strengths relative to the standard model predictions and products of cross sections and branching fraction to τ leptons, in up to 16 different kinematic regions. For the simultaneous measurements of the neural network based analysis and the analysis targeting vector boson associated Higgs boson production signal strengths are found to be 0.82 ± 0.11 for inclusive Higgs boson production, 0.67 ± 0.19 (0.81 ± 0.17) for the production mainly via gluon fusion (vector boson fusion), and 1.79 ± 0.45 for vector boson associated Higgs boson production.SCOAP3

    Search for low-mass dilepton resonances in Higgs boson decays to four-lepton final states in proton–proton collisions at √s=13TeV

    Get PDF
    Data Availability: This manuscript has no associated data or the data will not be deposited. [Authors’ comment: For CMS Release and preservation of data used by the CMS Collaboration as the basis for publications is guided by the CMS policy as stated in “CMS data preservation, re-use and open access policy” (https://cms-docdb.cern.ch/cgi-bin/PublicDocDB/RetrieveFile?docid=6032&filename=CMSDataPolicyV1.2.pdf&version=2).]Copyright © CERN for the benefit of the CMS collaboration 2022. A search for low-mass dilepton resonances in Higgs boson decays is conducted in the four-lepton final state. The decay is assumed to proceed via a pair of beyond the standard model particles, or one such particle and a Z boson. The search uses proton–proton collision data collected with the CMS detector at the CERN LHC, corresponding to an integrated luminosity of 137fb−1, at a center-of-mass energy s√=13TeV. No significant deviation from the standard model expectation is observed. Upper limits at 95% confidence level are set on model-independent Higgs boson decay branching fractions. Additionally, limits on dark photon and axion-like particle production, based on two specific models, are reported.SCOAP3

    Observation of triple J/ψ meson production in proton-proton collisions

    Get PDF
    Data availability: Tabulated results are provided in the HEPData record for this analysis71. Release and preservation of data used by the CMS Collaboration as the basis for publications is guided by the CMS policy as stated in CMS data preservation, re-use and open access policy.Code availability: The CMS core software is publically available at https://github.com/cms-sw/cmssw.Copyright . Protons consist of three valence quarks, two up-quarks and one down-quark, held together by gluons and a sea of quark-antiquark pairs. Collectively, quarks and gluons are referred to as partons. In a proton-proton collision, typically only one parton of each proton undergoes a hard scattering – referred to as single-parton scattering – leaving the remainder of each proton only slightly disturbed. Here, we report the study of double- and triple-parton scatterings through the simultaneous production of three J/ψ mesons, which consist of a charm quark-antiquark pair, in proton-proton collisions recorded with the CMS experiment at the Large Hadron Collider. We observed this process – reconstructed through the decays of J/ψ mesons into pairs of oppositely charged muons – with a statistical significance above five standard deviations. We measured the inclusive fiducial cross-section to be 272+141−104(stat)±17(syst)fb, and compared it to theoretical expectations for triple-J/ψ meson production in single-, double- and triple-parton scattering scenarios. Assuming factorization of multiple hard-scattering probabilities in terms of single-parton scattering cross-sections, double- and triple-parton scattering are the dominant contributions for the measured process.SCOAP3.Change history: 27 February 2023A Correction to this paper has been published: https://doi.org/10.1038/s41567-023-01992-

    Precision measurement of the W boson decay branching fractions in proton-proton collisions at √s=13 TeV

    Get PDF
    The leptonic and inclusive hadronic decay branching fractions of the W boson are measured using proton-proton collision data collected at ffiffi s p ¼ 13 TeV by the CMS experiment at the CERN LHC, corresponding to an integrated luminosity of 35.9 fb−1. Events characterized by the production of one or two W bosons are selected and categorized based on the multiplicity and flavor of reconstructed leptons, the number of jets, and the number of jets identified as originating from the hadronization of b quarks. A binned maximum likelihood estimate of the W boson branching fractions is performed simultaneously in each event category. The measured branching fractions of the W boson decaying into electron, muon, and tau lepton final states are ð10.83 0.10Þ%, ð10.94 0.08Þ%, and ð10.77 0.21Þ%, respectively, consistent with lepton flavor universality for the weak interaction. The average leptonic and inclusive hadronic decay branching fractions are estimated to be ð10.89 0.08Þ% and ð67.32 0.23Þ%, respec tively. Based on the hadronic branching fraction, three standard model quantities are subsequently derived: the sum of squared elements in the first two rows of the Cabibbo–Kobayashi–Maskawa (CKM) matrix P ij jVijj 2 ¼ 1.984 0.021, the CKM element jVcsj ¼ 0.967 0.011, and the strong coupling constant at the W boson mass scale, αSðm2 WÞ ¼ 0.095 0.033
    corecore