2,201 research outputs found
No entropy enigmas for N=4 dyons
We explain why multi-centered black hole configurations where at least one of
the centers is a large black hole do not contribute to the indexed degeneracies
in theories with N=4 supersymmetry. This is a consequence of the fact that such
configurations, although supersymmetric, belong to long supermultiplets. As a
result, there is no entropy enigma in N=4 theories, unlike in N=2 theories.Comment: 14 page
Argyres-Douglas Loci, Singularity Structures and Wall-Crossings in Pure N=2 Gauge Theories with Classical Gauge Groups
N=2 Seiberg-Witten theories allow an interesting interplay between the
Argyres-Douglas loci, singularity structures and wall-crossing formulae. In
this paper we investigate this connection by first studying the singularity
structures of hyper-elliptic Seiberg-Witten curves for pure N=2 gauge theories
with SU(r+1) and Sp(2r) gauge groups, and propose new methods to locate the
Argyres-Douglas loci in the moduli space, where multiple mutually non-local BPS
states become massless. In a region of the moduli space, we compute dyon
charges for all 2r+2 and 2r+1 massless dyons for SU(r+1) and Sp(2r) gauge
groups respectively for rank r>1. From here we elucidate the connection to the
wall-crossing phenomena for pure Sp(4) Seiberg-Witten theory near the
Argyres-Douglas loci, despite our emphasis being only at the massless sector of
the BPS spectra. We also present 2r-1 candidates for the maximal
Argyres-Douglas points for pure SO(2r+1) Seiberg-Witten theory.Comment: 81 pages, 41 figures, LaTeX; v2: Minor cosmetic changes and
correction of a typographical error in acknowledgement. Final version to
appear in JHE
Behavioral implications of shortlisting procedures
We consider two-stage “shortlisting procedures” in which the menu of alternatives is first pruned by some process or criterion and then a binary relation is maximized. Given a particular first-stage process, our main result supplies a necessary and sufficient condition for choice data to be consistent with a procedure in the designated class. This result applies to any class of procedures with a certain lattice structure, including the cases of “consideration filters,” “satisficing with salience effects,” and “rational shortlist methods.” The theory avoids background assumptions made for mathematical convenience; in this and other respects following Richter’s classical analysis of preference-maximizing choice in the absence of shortlisting
Higher derivative type II string effective actions, automorphic forms and E11
By dimensionally reducing the ten-dimensional higher derivative type IIA
string theory effective action we place constraints on the automorphic forms
that appear in the effective action in lower dimensions. We propose a number of
properties of such automorphic forms and consider the prospects that E11 can
play a role in the formulation of the higher derivative string theory effective
action.Comment: 34 page
BPS States, Refined Indices, and Quiver Invariants
For D=4 BPS state construction, counting, and wall-crossing thereof, quiver
quantum mechanics offers two alternative approaches, the Coulomb phase and the
Higgs phase, which sometimes produce inequivalent counting. The authors have
proposed, in arXiv:1205.6511, two conjectures on the precise relationship
between the two, with some supporting evidences. Higgs phase ground states are
naturally divided into the Intrinsic Higgs sector, which is insensitive to
wall-crossings and thus an invariant of quiver, plus a pulled-back ambient
cohomology, conjectured to be an one-to-one image of Coulomb phase ground
states. In this note, we show that these conjectures hold for all cyclic
quivers with Abelian nodes, and further explore angular momentum and R-charge
content of individual states. Along the way, we clarify how the protected spin
character of BPS states should be computed in the Higgs phase, and further
determine the entire Hodge structure of the Higgs phase cohomology. This shows
that, while the Coulomb phase states are classified by angular momentum, the
Intrinsic Higgs states are classified by R-symmetry.Comment: 51 pages, 5 figure
The ABCDEF's of Matrix Models for Supersymmetric Chern-Simons Theories
We consider N = 3 supersymmetric Chern-Simons gauge theories with product
unitary and orthosymplectic groups and bifundamental and fundamental fields. We
study the partition functions on an S^3 by using the Kapustin-Willett-Yaakov
matrix model. The saddlepoint equations in a large N limit lead to a constraint
that the long range forces between the eigenvalues must cancel; the resulting
quiver theories are of affine Dynkin type. We introduce a folding/unfolding
trick which lets us, at the level of the large N matrix model, (i) map quivers
with orthosymplectic groups to those with unitary groups, and (ii) obtain
non-simply laced quivers from the corresponding simply laced quivers using a
Z_2 outer automorphism. The brane configurations of the quivers are described
in string theory and the folding/unfolding is interpreted as the
addition/subtraction of orientifold and orbifold planes. We also relate the
U(N) quiver theories to the affine ADE quiver matrix models with a
Stieltjes-Wigert type potential, and derive the generalized Seiberg duality in
2 + 1 dimensions from Seiberg duality in 3 + 1 dimensions.Comment: 30 pages, 5 figure
Towards a large-scale quantum simulator on diamond surface at room temperature
Strongly-correlated quantum many-body systems exhibits a variety of exotic
phases with long-range quantum correlations, such as spin liquids and
supersolids. Despite the rapid increase in computational power of modern
computers, the numerical simulation of these complex systems becomes
intractable even for a few dozens of particles. Feynman's idea of quantum
simulators offers an innovative way to bypass this computational barrier.
However, the proposed realizations of such devices either require very low
temperatures (ultracold gases in optical lattices, trapped ions,
superconducting devices) and considerable technological effort, or are
extremely hard to scale in practice (NMR, linear optics). In this work, we
propose a new architecture for a scalable quantum simulator that can operate at
room temperature. It consists of strongly-interacting nuclear spins attached to
the diamond surface by its direct chemical treatment, or by means of a
functionalized graphene sheet. The initialization, control and read-out of this
quantum simulator can be accomplished with nitrogen-vacancy centers implanted
in diamond. The system can be engineered to simulate a wide variety of
interesting strongly-correlated models with long-range dipole-dipole
interactions. Due to the superior coherence time of nuclear spins and
nitrogen-vacancy centers in diamond, our proposal offers new opportunities
towards large-scale quantum simulation at room temperatures
Of cattle, sand flies and men : a systematic review of risk factor analyses for South Asian visceral leishmaniasis and implications for elimination
Background: Studies performed over the past decade have identified fairly consistent epidemiological patterns of risk
factors for visceral leishmaniasis (VL) in the Indian subcontinent.
Methods and Principal Findings: To inform the current regional VL elimination effort and identify key gaps in knowledge,
we performed a systematic review of the literature, with a special emphasis on data regarding the role of cattle because
primary risk factor studies have yielded apparently contradictory results. Because humans form the sole infection reservoir,
clustering of kala-azar cases is a prominent epidemiological feature, both at the household level and on a larger scale.
Subclinical infection also tends to show clustering around kala-azar cases. Within villages, areas become saturated over a
period of several years; kala-azar incidence then decreases while neighboring areas see increases. More recently, post kalaazar
dermal leishmaniasis (PKDL) cases have followed kala-azar peaks. Mud walls, palpable dampness in houses, and peridomestic
vegetation may increase infection risk through enhanced density and prolonged survival of the sand fly vector.
Bed net use, sleeping on a cot and indoor residual spraying are generally associated with decreased risk. Poor micronutrient
status increases the risk of progression to kala-azar. The presence of cattle is associated with increased risk in some studies
and decreased risk in others, reflecting the complexity of the effect of bovines on sand fly abundance, aggregation, feeding
behavior and leishmanial infection rates. Poverty is an overarching theme, interacting with individual risk factors on multiple
levels.
Conclusions: Carefully designed demonstration projects, taking into account the complex web of interconnected risk
factors, are needed to provide direct proof of principle for elimination and to identify the most effective maintenance
activities to prevent a rapid resurgence when interventions are scaled back. More effective, short-course treatment
regimens for PKDL are urgently needed to enable the elimination initiative to succeed
The Conformal Sector of F-theory GUTs
D3-brane probes of exceptional Yukawa points in F-theory GUTs are natural
hidden sectors for particle phenomenology. We find that coupling the probe to
the MSSM yields a new class of N = 1 conformal fixed points with computable
infrared R-charges. Quite surprisingly, we find that the MSSM only weakly mixes
with the strongly coupled sector in the sense that the MSSM fields pick up
small exactly computable anomalous dimensions. Additionally, we find that
although the states of the probe sector transform as complete GUT multiplets,
their coupling to Standard Model fields leads to a calculable threshold
correction to the running of the visible sector gauge couplings which improves
precision unification. We also briefly consider scenarios in which SUSY is
broken in the hidden sector. This leads to a gauge mediated spectrum for the
gauginos and first two superpartner generations, with additional contributions
to the third generation superpartners and Higgs sector.Comment: v2: 51 pages, 2 figures, remark added, typos correcte
Localization of N=4 Superconformal Field Theory on S^1 x S^3 and Index
We provide the geometrical meaning of the superconformal index.
With this interpretation, the superconformal index can be realized
as the partition function on a Scherk-Schwarz deformed background. We apply the
localization method in TQFT to compute the deformed partition function since
the deformed action can be written as a -exact form. The
critical points of the deformed action turn out to be the space of flat
connections which are, in fact, zero modes of the gauge field. The one-loop
evaluation over the space of flat connections reduces to the matrix integral by
which the superconformal index is expressed.Comment: 42+1 pages, 2 figures, JHEP style: v1.2.3 minor corrections, v4 major
revision, conclusions essentially unchanged, v5 published versio
- …
