436 research outputs found
Geo-environmental mapping using physiographic analysis: constraints on the evaluation of land instability and groundwater pollution hazards in the Metropolitan District of Campinas, Brazil
Geo-environmental terrain assessments and territorial zoning are useful tools for the formulation and implementation of environmental management instruments (including policy-making, planning, and enforcement of statutory regulations). They usually involve a set of procedures and techniques for delimitation, characterisation and classification of terrain units. However, terrain assessments and zoning exercises are often costly and time-consuming, particularly when encompassing large areas, which in many cases prevent local agencies in developing countries from properly benefiting from such assessments. In the present paper, a low-cost technique based on the analysis of texture of satellite imagery was used for delimitation of terrain units. The delimited units were further analysed in two test areas situated in Southeast Brazil to provide estimates of land instability and the vulnerability of groundwater to pollution hazards. The implementation incorporated procedures for inferring the influences and potential implications of tectonic fractures and other discontinuities on ground behaviour and local groundwater flow. Terrain attributes such as degree of fracturing, bedrock lithology and weathered materials were explored as indicators of ground properties. The paper also discusses constraints on- and limitations of- the approaches taken
Genomic signatures of population decline in the malaria mosquito Anopheles gambiae
Population genomic features such as nucleotide diversity and linkage disequilibrium are expected to be strongly shaped by changes in population size, and might therefore be useful for monitoring the success of a control campaign. In the Kilifi district of Kenya, there has been a marked decline in the abundance of the malaria vector Anopheles gambiae subsequent to the rollout of insecticide-treated bed nets. To investigate whether this decline left a detectable population genomic signature, simulations were performed to compare the effect of population crashes on nucleotide diversity, Tajima's D, and linkage disequilibrium (as measured by the population recombination parameter ρ). Linkage disequilibrium and ρ were estimated for An. gambiae from Kilifi, and compared them to values for Anopheles arabiensis and Anopheles merus at the same location, and for An. gambiae in a location 200 km from Kilifi. In the first simulations ρ changed more rapidly after a population crash than the other statistics, and therefore is a more sensitive indicator of recent population decline. In the empirical data, linkage disequilibrium extends 100-1000 times further, and ρ is 100-1000 times smaller, for the Kilifi population of An. gambiae than for any of the other populations. There were also significant runs of homozygosity in many of the individual An. gambiae mosquitoes from Kilifi. These results support the hypothesis that the recent decline in An. gambiae was driven by the rollout of bed nets. Measuring population genomic parameters in a small sample of individuals before, during and after vector or pest control may be a valuable method of tracking the effectiveness of interventions
Proximity to Sports Facilities and Sports Participation for Adolescents in Germany
Objectives - To assess the relationship between proximity to specific sports facilities and participation in the corresponding sports activities for adolescents in Germany.
Methods - A sample of 1,768 adolescents aged 11–17 years old and living in 161 German communities was examined. Distances to the nearest sports facilities were calculated as an indicator of proximity to sports facilities using Geographic Information Systems (GIS). Participation in specific leisure-time sports activities in sports clubs was assessed using a self-report questionnaire and individual-level socio-demographic variables were derived from a parent questionnaire. Community-level socio-demographics as covariates were selected from the INKAR database, in particular from indicators and maps on land development. Logistic regression analyses were conducted to examine associations between proximity to the nearest sports facilities and participation in the corresponding sports activities.
Results - The logisitic regression analyses showed that girls residing longer distances from the nearest gym were less likely to engage in indoor sports activities; a significant interaction between distances to gyms and level of urbanization was identified. Decomposition of the interaction term showed that for adolescent girls living in rural areas participation in indoor sports activities was positively associated with gym proximity. Proximity to tennis courts and indoor pools was not associated with participation in tennis or water sports, respectively.
Conclusions - Improved proximity to gyms is likely to be more important for female adolescents living in rural areas
Modulation of emotional appraisal by false physiological feedback during fMRI
BACKGROUND
James and Lange proposed that emotions are the perception of physiological reactions. Two-level theories of emotion extend this model to suggest that cognitive interpretations of physiological changes shape self-reported emotions. Correspondingly false physiological feedback of evoked or tonic bodily responses can alter emotional attributions. Moreover, anxiety states are proposed to arise from detection of mismatch between actual and anticipated states of physiological arousal. However, the neural underpinnings of these phenomena previously have not been examined.
METHODOLOGY/PRINCIPAL FINDINGS
We undertook a functional brain imaging (fMRI) experiment to investigate how both primary and second-order levels of physiological (viscerosensory) representation impact on the processing of external emotional cues. 12 participants were scanned while judging face stimuli during both exercise and non-exercise conditions in the context of true and false auditory feedback of tonic heart rate. We observed that the perceived emotional intensity/salience of neutral faces was enhanced by false feedback of increased heart rate. Regional changes in neural activity corresponding to this behavioural interaction were observed within included right anterior insula, bilateral mid insula, and amygdala. In addition, right anterior insula activity was enhanced during by asynchronous relative to synchronous cardiac feedback even with no change in perceived or actual heart rate suggesting this region serves as a comparator to detect physiological mismatches. Finally, BOLD activity within right anterior insula and amygdala predicted the corresponding changes in perceived intensity ratings at both a group and an individual level.
CONCLUSIONS/SIGNIFICANCE
Our findings identify the neural substrates supporting behavioural effects of false physiological feedback, and highlight mechanisms that underlie subjective anxiety states, including the importance of the right anterior insula in guiding second-order "cognitive" representations of bodily arousal state
Modulation of emotional appraisal by false physiological feedback during fMRI
BACKGROUND
James and Lange proposed that emotions are the perception of physiological reactions. Two-level theories of emotion extend this model to suggest that cognitive interpretations of physiological changes shape self-reported emotions. Correspondingly false physiological feedback of evoked or tonic bodily responses can alter emotional attributions. Moreover, anxiety states are proposed to arise from detection of mismatch between actual and anticipated states of physiological arousal. However, the neural underpinnings of these phenomena previously have not been examined.
METHODOLOGY/PRINCIPAL FINDINGS
We undertook a functional brain imaging (fMRI) experiment to investigate how both primary and second-order levels of physiological (viscerosensory) representation impact on the processing of external emotional cues. 12 participants were scanned while judging face stimuli during both exercise and non-exercise conditions in the context of true and false auditory feedback of tonic heart rate. We observed that the perceived emotional intensity/salience of neutral faces was enhanced by false feedback of increased heart rate. Regional changes in neural activity corresponding to this behavioural interaction were observed within included right anterior insula, bilateral mid insula, and amygdala. In addition, right anterior insula activity was enhanced during by asynchronous relative to synchronous cardiac feedback even with no change in perceived or actual heart rate suggesting this region serves as a comparator to detect physiological mismatches. Finally, BOLD activity within right anterior insula and amygdala predicted the corresponding changes in perceived intensity ratings at both a group and an individual level.
CONCLUSIONS/SIGNIFICANCE
Our findings identify the neural substrates supporting behavioural effects of false physiological feedback, and highlight mechanisms that underlie subjective anxiety states, including the importance of the right anterior insula in guiding second-order "cognitive" representations of bodily arousal state
The nuclear receptors of Biomphalaria glabrata and Lottia gigantea: Implications for developing new model organisms
© 2015 Kaur et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedNuclear receptors (NRs) are transcription regulators involved in an array of diverse physiological functions including key roles in endocrine and metabolic function. The aim of this study was to identify nuclear receptors in the fully sequenced genome of the gastropod snail, Biomphalaria glabrata, intermediate host for Schistosoma mansoni and compare these to known vertebrate NRs, with a view to assessing the snail's potential as a invertebrate model organism for endocrine function, both as a prospective new test organism and to elucidate the fundamental genetic and mechanistic causes of disease. For comparative purposes, the genome of a second gastropod, the owl limpet, Lottia gigantea was also investigated for nuclear receptors. Thirty-nine and thirty-three putative NRs were identified from the B. glabrata and L. gigantea genomes respectively, based on the presence of a conserved DNA-binding domain and/or ligand-binding domain. Nuclear receptor transcript expression was confirmed and sequences were subjected to a comparative phylogenetic analysis, which demonstrated that these molluscs have representatives of all the major NR subfamilies (1-6). Many of the identified NRs are conserved between vertebrates and invertebrates, however differences exist, most notably, the absence of receptors of Group 3C, which includes some of the vertebrate endocrine hormone targets. The mollusc genomes also contain NR homologues that are present in insects and nematodes but not in vertebrates, such as Group 1J (HR48/DAF12/HR96). The identification of many shared receptors between humans and molluscs indicates the potential for molluscs as model organisms; however the absence of several steroid hormone receptors indicates snail endocrine systems are fundamentally different.The National Centre for the Replacement, Refinement and Reduction of Animals in Research, Grant Ref:G0900802 to CSJ, LRN, SJ & EJR [www.nc3rs.org.uk]
Use of the margin of stability to quantify stability in pathologic gait - a qualitative systematic review
BACKGROUND: The Margin of Stability (MoS) is a widely used objective measure of dynamic stability during gait. Increasingly, researchers are using the MoS to assess the stability of pathological populations to gauge their stability capabilities and coping strategies, or as an objective marker of outcome, response to treatment or disease progression. The objectives are; to describe the types of pathological gait that are assessed using the MoS, to examine the methods used to assess MoS and to examine the way the MoS data is presented and interpreted. METHODS: A systematic review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Guidelines (PRISMA) in the following databases: Web of Science, PubMed, UCL Library Explore, Cochrane Library, Scopus. All articles measured the MoS of a pathologically affected adult human population whilst walking in a straight line. Extracted data were collected per a prospectively defined list, which included: population type, method of data analysis and model building, walking tasks undertaken, and interpretation of the MoS. RESULTS: Thirty-one studies were included in the final review. More than 15 different clinical populations were studied, most commonly post-stroke and unilateral transtibial amputee populations. Most participants were assessed in a gait laboratory using motion capture technology, whilst 2 studies used instrumented shoes. A variety of centre of mass, base of support and MoS definitions and calculations were described. CONCLUSIONS: This is the first systematic review to assess use of the MoS and the first to consider its clinical application. Findings suggest the MoS has potential to be a helpful, objective measurement in a variety of clinically affected populations. Unfortunately, the methodology and interpretation varies, which hinders subsequent study comparisons. A lack of baseline results from large studies mean direct comparison between studies is difficult and strong conclusions are hard to make. Further work from the biomechanics community to develop reporting guidelines for MoS calculation methodology and a commitment to larger baseline studies for each pathology is welcomed
Widespread forest vertebrate extinctions induced by a mega hydroelectric dam in lowland Amazonia
Mega hydropower projects in tropical forests pose a major emergent threat to terrestrial and freshwater biodiversity worldwide. Despite the unprecedented number of existing, underconstruction and planned hydroelectric dams in lowland tropical forests, long-term effects on biodiversity have yet to be evaluated. We examine how medium and large-bodied assemblages of terrestrial and arboreal vertebrates (including 35 mammal, bird and tortoise species) responded to the drastic 26-year post-isolation history of archipelagic alteration in landscape structure and habitat quality in a major hydroelectric reservoir of Central Amazonia. The Balbina Hydroelectric Dam inundated 3,129 km2 of primary forests, simultaneously isolating 3,546 land-bridge islands. We conducted intensive biodiversity surveys at 37 of those islands and three adjacent continuous forests using a combination of four survey techniques, and detected strong forest habitat area effects in explaining patterns of vertebrate extinction. Beyond clear area effects, edge-mediated surface fire disturbance was the most important additional driver of species loss, particularly in islands smaller than 10 ha. Based on species-area models, we predict that only 0.7% of all islands now harbor a species-rich vertebrate assemblage consisting of ≥80% of all species. We highlight the colossal erosion in vertebrate diversity driven by a man-made dam and show that the biodiversity impacts of mega dams in lowland tropical forest regions have been severely overlooked. The geopolitical strategy to deploy many more large hydropower infrastructure projects in regions like lowland Amazonia should be urgently reassessed, and we strongly advise that long-term biodiversity impacts should be explicitly included in pre-approval environmental impact assessments
TRY plant trait database - enhanced coverage and open access
Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
Metal alloys, matrix inclusions and manufacturing techniques of Moinhos de Golas collection (North Portugal): a study by micro-EDXRF, SEM–EDS, optical microscopy and X-ray radiography
"Article:820"A collection of 35 metallic artefacts comprising
various typologies, some of which can be attributed to the
Bronze Age and others to later periods, were studied to
provide detailed information on elemental composition,
manufacturing techniques and preservation state. Elemental
analysis by micro-EDXRF and SEM–EDS was performed
to investigate the use of different alloys and to
study the presence of microstructural heterogeneities, as
inclusions. X-ray radiography, optical microscopy and
SEM–EDS were used to investigate manufacturing techniques
and degradation features. Results showed that most
of the artefacts were produced in a binary bronze alloy
(Cu–Sn) with 10–15 wt% Sn and a low concentration of
impurities. Other artefacts were produced in copper or in
brass, the latest with varying contents of Zn, Sn and Pb. A
variety of inclusions in the metal matrices were also found,
some related to specific types of alloys, as (Cu–Ni)S2 in
coppers, or ZnS in brasses. Microstructural observations
revealed that the majority of the artefacts were subjected to
cycles of thermomechanical processing after casting, being
evident that among some artefacts different parts were
subjected to distinct treatments. The radiographic images
revealed structural heterogeneities related to local corrosion
processes and fissures that seem to have developed in
wear-tension zones, as in the handle of some daggers.
Radiographic images were also useful to detect the use of
different materials in one particular brass artefact, revealing
the presence of a possible Cu–Sn solder.This work was funded by FEDER funds through
the COMPETE 2020 Programme and National Funds through FCT—
Fundação para a Ciência e a Tecnologia under the project UID/CTM/
50025/2013 to CENIMAT/I3N. C2
TN/IST authors gratefully
acknowledge the FCT support through the UID/Multi/04349/2013
project. EF acknowledges FCT for the grant SFRH/BPD/97360/2013.
JF acknowledge FCT for the grant SFRH/BD/65143/2009. Part of this
project has been done in the framework of the FCT project ENARDAS
(PTDC/HISARQ/112983/2009).info:eu-repo/semantics/publishedVersio
- …
