1,834 research outputs found
Big bang simulation in superfluid 3He-B -- Vortex nucleation in neutron-irradiated superflow
We report the observation of vortex formation upon the absorption of a
thermal neutron in a rotating container of superfluid He-B. The nuclear
reaction n + He = p + H + 0.76MeV heats a cigar shaped region of the
superfluid into the normal phase. The subsequent cooling of this region back
through the superfluid transition results in the nucleation of quantized
vortices. Depending on the superflow velocity, sufficiently large vortex rings
grow under the influence of the Magnus force and escape into the container
volume where they are detected individually with nuclear magnetic resonance.
The larger the superflow velocity the smaller the rings which can expand. Thus
it is possible to obtain information about the morphology of the initial defect
network. We suggest that the nucleation of vortices during the rapid cool-down
into the superfluid phase is similar to the formation of defects during
cosmological phase transitions in the early universe.Comment: 4 pages, LaTeX file, 4 figures are available at
ftp://boojum.hut.fi/pub/publications/lowtemp/LTL-95009.p
Dynamics and transport near quantum-critical points
The physics of non-zero temperature dynamics and transport near
quantum-critical points is discussed by a detailed study of the O(N)-symmetric,
relativistic, quantum field theory of a N-component scalar field in spatial
dimensions. A great deal of insight is gained from a simple, exact solution of
the long-time dynamics for the N=1 d=1 case: this model describes the critical
point of the Ising chain in a transverse field, and the dynamics in all the
distinct, limiting, physical regions of its finite temperature phase diagram is
obtained. The N=3, d=1 model describes insulating, gapped, spin chain
compounds: the exact, low temperature value of the spin diffusivity is
computed, and compared with NMR experiments. The N=3, d=2,3 models describe
Heisenberg antiferromagnets with collinear N\'{e}el correlations, and
experimental realizations of quantum-critical behavior in these systems are
discussed. Finally, the N=2, d=2 model describes the superfluid-insulator
transition in lattice boson systems: the frequency and temperature dependence
of the the conductivity at the quantum-critical coupling is described and
implications for experiments in two-dimensional thin films and inversion layers
are noted.Comment: Lectures presented at the NATO Advanced Study Institute on "Dynamical
properties of unconventional magnetic systems", Geilo, Norway, April 2-12,
1997, edited by A. Skjeltorp and D. Sherrington, Kluwer Academic, to be
published. 46 page
Generating MHV super-vertices in light-cone gauge
We constructe the SYM lagrangian in light-cone gauge using
chiral superfields instead of the standard vector superfield approach and
derive the MHV lagrangian. The canonical transformations of the gauge field and
gaugino fields are summarised by the transformation condition of chiral
superfields. We show that MHV super-vertices can be described
by a formula similar to that of the MHV super-amplitude. In the
discussions we briefly remark on how to derive Nair's formula for
SYM theory directly from light-cone lagrangian.Comment: 25 pages, 7 figures, JHEP3 style; v2: references added, some typos
corrected; Clarification on the condition used to remove one Grassmann
variabl
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
Physics, Astrophysics and Cosmology with Gravitational Waves
Gravitational wave detectors are already operating at interesting sensitivity
levels, and they have an upgrade path that should result in secure detections
by 2014. We review the physics of gravitational waves, how they interact with
detectors (bars and interferometers), and how these detectors operate. We study
the most likely sources of gravitational waves and review the data analysis
methods that are used to extract their signals from detector noise. Then we
consider the consequences of gravitational wave detections and observations for
physics, astrophysics, and cosmology.Comment: 137 pages, 16 figures, Published version
<http://www.livingreviews.org/lrr-2009-2
Analysis of the Maize dicer-like1 Mutant, fuzzy tassel, Implicates MicroRNAs in Anther Maturation and Dehiscence
Sexual reproduction in plants requires development of haploid gametophytes from somatic tissues. Pollen is the male gametophyte and develops within the stamen; defects in the somatic tissues of the stamen and in the male gametophyte itself can result in male sterility. The maize fuzzy tassel (fzt) mutant has a mutation in dicer-like1 (dcl1), which encodes a key enzyme required for microRNA (miRNA) biogenesis. Many miRNAs are reduced in fzt, and fzt mutants exhibit a broad range of developmental defects, including male sterility. To gain further insight into the roles of miRNAs in maize stamen development, we conducted a detailed analysis of the male sterility defects in fzt mutants. Early development was normal in fzt mutant anthers, however fzt anthers arrested in late stages of anther maturation and did not dehisce. A minority of locules in fzt anthers also exhibited anther wall defects. At maturity, very little pollen in fzt anthers was viable or able to germinate. Normal pollen is tricellular at maturity; pollen from fzt anthers included a mixture of unicellular, bicellular, and tricellular pollen. Pollen from normal anthers is loaded with starch before dehiscence, however pollen from fzt anthers failed to accumulate starch. Our results indicate an absolute requirement for miRNAs in the final stages of anther and pollen maturation in maize. Anther wall defects also suggest that miRNAs have key roles earlier in anther development. We discuss candidate miRNAs and pathways that might underlie fzt anther defects, and also note that male sterility in fzt resembles water deficit-induced male sterility, highlighting a possible link between development and stress responses in plants.ECU Open Access Publishing Support Fun
Revisiting QRS detection methodologies for portable, wearable, battery-operated, and wireless ECG systems
Cardiovascular diseases are the number one cause of death worldwide. Currently, portable battery-operated systems such as mobile phones with wireless ECG sensors have the potential to be used in continuous cardiac function assessment that can be easily integrated into daily life. These portable point-of-care diagnostic systems can therefore help unveil and treat cardiovascular diseases. The basis for ECG analysis is a robust detection of the prominent QRS complex, as well as other ECG signal characteristics. However, it is not clear from the literature which ECG analysis algorithms are suited for an implementation on a mobile device. We investigate current QRS detection algorithms based on three assessment criteria: 1) robustness to noise, 2) parameter choice, and 3) numerical efficiency, in order to target a universal fast-robust detector. Furthermore, existing QRS detection algorithms may provide an acceptable solution only on small segments of ECG signals, within a certain amplitude range, or amid particular types of arrhythmia and/or noise. These issues are discussed in the context of a comparison with the most conventional algorithms, followed by future recommendations for developing reliable QRS detection schemes suitable for implementation on battery-operated mobile devices.Mohamed Elgendi, Björn Eskofier, Socrates Dokos, Derek Abbot
Correlates of physical activity and sitting time in adults with type 2 diabetes attending primary health care in Oman
Abstract Background Despite evidence of the benefits of physical activity in the management of type 2 diabetes, it is poorly addressed in diabetes care. This study aimed to identify the prevalence and correlates of meeting ≥600MET-min/wk. (150 min/wk) of physical activity and sitting time in adults with type 2 diabetes in Oman. Approaches to encourage physical activity in diabetes care were explored. Methods A cross-sectional study using the Global Physical Activity Questionnaire was conducted in 17 randomly selected primary health centres in Muscat. Clinical data including co-morbidities were extracted from the health information system. Questions on physical activity preferences and approaches were included. Patients were approached if they were ≥18 years, and had been registered in the diabetes clinic for >2 years. Results The questionnaire was completed by 305 people (females 57% and males 43%). Mean age (SD) was 57 (10.8) years and mean BMI (SD) was 31.0 (6.0) kg/m2. Duration of diabetes ranged from 2 to 25 (mean 7.6) years. Hypertension (71%) and dyslipidaemia (62%) were common comorbidities. Most (58.4%) had an HbA1c ≥7% indicating poor glycaemic control (55% in males vs 61% in females). Physical activity recommendations were met by 21.6% of the participants, mainly through leisure activities. Odds of meeting the recommendations were significantly higher in males (OR 4.8, 95% CI 2.5–9.1), individuals ≤57 years (OR 3.0, 95% CI 1.6–5.9), those at active self-reported stages of change for physical activity (OR 2.2, 95% CI 1.2–4.1) and those reporting no barriers to performing physical activity (OR 2.7, 95% CI 1.4–4.9). Median (25th, 75th percentiles) sitting time was 705 (600, 780) min/d. Older age (>57 years) was associated with longer sitting time (>705 min/d) (OR 2.8, 95% CI 1.7–4.6). Preferred methods to support physical activity in routine diabetes care were consultations (38%), structured physical activity sessions (13.4%) and referrals to physical activity facilities (5.6%) delivered by a variety of health care providers. Conclusions The results suggest that intervention strategies should take account of gender, age, opportunities within daily life to promote active behaviour and readiness to change. Offering physical activity consultations is of interest to this study population, thus development and evaluation of interventions are warranted
Self-oligomerization regulates stability of survival motor neuron protein isoforms by sequestering an SCF<sup>Slmb</sup> degron
Spinal muscular atrophy (SMA) is caused by homozygous mutations in human SMN1. Expression of a duplicate gene (SMN2) primarily results in skipping of exon 7 and production of an unstable protein isoform, SMNΔ7. Although SMN2 exon skipping is the principal contributor to SMA severity, mechanisms governing stability of survival motor neuron (SMN) isoforms are poorly understood. We used a Drosophila model system and label-free proteomics to identify the SCFSlmb ubiquitin E3 ligase complex as a novel SMN binding partner. SCFSlmb interacts with a phosphor degron embedded within the human and fruitfly SMN YG-box oligomerization domains. Substitution of a conserved serine (S270A) interferes with SCFSlmb binding and stabilizes SMNΔ7. SMA-causing missense mutations that block multimerization of full-length SMN are also stabilized in the degron mutant background. Overexpression of SMNΔ7S270A, but not wild-type (WT) SMNΔ7, provides a protective effect in SMA model mice and human motor neuron cell culture systems. Our findings support a model wherein the degron is exposed when SMN is monomeric and sequestered when SMN forms higher-order multimers
- …
