2,385 research outputs found
The local symmetries of M-theory and their formulation in generalised geometry
In the doubled field theory approach to string theory, the T-duality group is
promoted to a manifest symmetry at the expense of replacing ordinary Riemannian
geometry with generalised geometry on a doubled space. The local symmetries are
then given by a generalised Lie derivative and its associated algebra. This
paper constructs an analogous structure for M-theory. A crucial by-product of
this is the derivation of the physical section condition for M-theory
formulated in an extended space.Comment: 20 pages, v2: Author Name corrected, v3: typos correcte
Higher derivative type II string effective actions, automorphic forms and E11
By dimensionally reducing the ten-dimensional higher derivative type IIA
string theory effective action we place constraints on the automorphic forms
that appear in the effective action in lower dimensions. We propose a number of
properties of such automorphic forms and consider the prospects that E11 can
play a role in the formulation of the higher derivative string theory effective
action.Comment: 34 page
Duality Invariant Actions and Generalised Geometry
We construct the non-linear realisation of the semi-direct product of E(11)
and its first fundamental representation at lowest order and appropriate to
spacetime dimensions four to seven. This leads to a non-linear realisation of
the duality groups and introduces fields that depend on a generalised space
which possess a generalised vielbein. We focus on the part of the generalised
space on which the duality groups alone act and construct an invariant action.Comment: 59 pages (typos fixed and added comments
IIA/IIB Supergravity and Ten-forms
We perform a careful investigation of which p-form fields can be introduced
consistently with the supersymmetry algebra of IIA and/or IIB ten-dimensional
supergravity. In particular the ten-forms, also known as "top-forms", require a
careful analysis since in this case, as we will show, closure of the
supersymmetry algebra at the linear level does not imply closure at the
non-linear level. Consequently, some of the (IIA and IIB) ten-form potentials
introduced in earlier work of some of us are discarded. At the same time we
show that new ten-form potentials, consistent with the full non-linear
supersymmetry algebra can be introduced. We give a superspace explanation of
our work. All of our results are precisely in line with the predictions of the
E(11) algebra.Comment: 17 page
Generalized Geometry and M theory
We reformulate the Hamiltonian form of bosonic eleven dimensional
supergravity in terms of an object that unifies the three-form and the metric.
For the case of four spatial dimensions, the duality group is manifest and the
metric and C-field are on an equal footing even though no dimensional reduction
is required for our results to hold. One may also describe our results using
the generalized geometry that emerges from membrane duality. The relationship
between the twisted Courant algebra and the gauge symmetries of eleven
dimensional supergravity are described in detail.Comment: 29 pages of Latex, v2 References added, typos fixed, v3 corrected
kinetic term and references adde
Goldstinos, Supercurrents and Metastable SUSY Breaking in N=2 Supersymmetric Gauge Theories
We construct an N=2 supersymmetric generalization of the N=1 supercurrent
formalism of Komargodski and Seiberg (KS) and use it to show that N=2 theories
with linear superconformal anomalies cannot break SUSY under certain broad
assumptions. This result suggests that there are no metastable SUSY breaking
vacua in a large class of theories that includes N=2 Super Yang-Mills (SYM).Comment: 19 pages; minor revisions; JHEP versio
On the infrared behaviour of 3d Chern-Simons theories in N=2 superspace
We discuss the problem of infrared divergences in the N=2 superspace approach
to classically marginal three-dimensional Chern-Simons-matter theories.
Considering the specific case of ABJM theory, we describe the origin of such
divergences and offer a prescription to eliminate them by introducing
non-trivial gauge-fixing terms in the action. We also comment on the extension
of our procedure to higher loop order and to general three-dimensional
Chern-Simons-matter models.Comment: 26 pages, 6 figures, JHEP3; v2: minor corrections and references
added; v3: introduction expanded, presentation of section 3.3.1 improved,
references added, version to appear in JHE
Fiber optic photoacoustic probe with ultrasonic tracking for guiding minimally invasive procedures
In a wide range of clinical procedures, accurate placement of medical devices such as needles and catheters is critical to optimize patient outcomes. Ultrasound imaging is often used to guide minimally invasive procedures, as it can provide real-time visualization of patient anatomy and medical devices. However, this modality can provide low image contrast for soft tissues, and poor visualization of medical devices that are steeply angled with respect to the incoming ultrasound beams. Photoacoustic sensors can provide information about the spatial distributions of tissue chromophores that could be valuable for guiding minimally invasive procedures. In this study, a system for guiding minimally invasive procedures using photoacoustic sensing was developed. This system included a miniature photoacoustic probe with three optical fibers: one with a bare end for photoacoustic excitation of tissue, a second for photoacoustic excitation of an optically absorbing coating at the distal end to transmit ultrasound, and a third with a Fabry-Perot cavity at the distal end for receiving ultrasound. The position of the photoacoustic probe was determined with ultrasonic tracking, which involved transmitting pulses from a linear-array ultrasound imaging probe at the tissue surface, and receiving them with the fiber-optic ultrasound receiver in the photoacoustic probe. The axial resolution of photoacoustic sensing was better than 70 μm, and the tracking accuracy was better than 1 mm in both axial and lateral dimensions. By translating the photoacoustic probe, depth scans were obtained from different spatial positions, and two-dimensional images were reconstructed using a frequency-domain algorithm
E7(7) invariant Lagrangian of d=4 N=8 supergravity
We present an E7(7) invariant Lagrangian that leads to the equations of
motion of d=4 N=8 supergravity without using Lagrange multipliers. The
superinvariance of this new action and the closure of the supersymmetry algebra
are proved explicitly for the terms that differ from the Cremmer--Julia
formulation. Since the diffeomorphism symmetry is not realized in the standard
way on the vector fields, we switch to the Hamiltonian formulation in order to
prove the invariance of the E7(7) invariant action under general coordinate
transformations. We also construct the conserved E7(7)-Noether current of
maximal supergravity and we conclude with comments on the implications of this
manifest off-shell E7(7)-symmetry for quantizing d=4 N=8 supergravity, in
particular on the E7(7)-action on phase space.Comment: 45 pages, references adde
High Resolution Spectroscopy of Two-Dimensional Electron Systems
Spectroscopic methods involving the sudden injection or ejection of electrons
in materials are a powerful probe of electronic structure and interactions.
These techniques, such as photoemission and tunneling, yield measurements of
the "single particle" density of states (SPDOS) spectrum of a system. The SPDOS
is proportional to the probability of successfully injecting or ejecting an
electron in these experiments. It is equal to the number of electronic states
in the system able to accept an injected electron as a function of its energy
and is among the most fundamental and directly calculable quantities in
theories of highly interacting systems. However, the two-dimensional electron
system (2DES), host to remarkable correlated electron states such as the
fractional quantum Hall effect, has proven difficult to probe
spectroscopically. Here we present an improved version of time domain
capacitance spectroscopy (TDCS) that now allows us to measure the SPDOS of a
2DES with unprecedented fidelity and resolution. Using TDCS, we perform
measurements of a cold 2DES, providing the first direct measurements of the
single-particle exchange-enhanced spin gap and single particle lifetimes in the
quantum Hall system, as well as the first observations of exchange splitting of
Landau levels not at the Fermi surface. The measurements reveal the difficult
to reach and beautiful structure present in this highly correlated system far
from the Fermi surface.Comment: There are formatting and minor textual differences between this
version and the published version in Nature (follow the DOI link below
- …
