1,082 research outputs found
Viral loads in clinical specimens and SARS manifestations.
1. A high viral load in nasopharyngeal aspirate (with or without a high viral load in serum) is a useful prognostic indicator of respiratory failure or mortality. The presence of viral RNA in multiple body sites is also indicative of poor prognosis. 2. Early treatment with an effective antiviral agent before day 10 may decrease the peak viral load, and thus ameliorate the clinical symptoms and mortality, and reduce viral shedding and the risk of transmissionpublished_or_final_versio
Modulation of porcine β-defensins 1 and 2 upon individual and combined Fusarium toxin exposure in a swine jejunal epithelial cell line
published_or_final_versio
The complete genome and proteome of laribacter hongkongensis reveal potential mechanisms for adaptations to different temperatures and habitats
Laribacter hongkongensis is a newly discovered Gram-negative bacillus of the Neisseriaceae family associated with freshwater fish-borne gastroenteritis and traveler's diarrhea. The complete genome sequence of L. hongkongensis HLHK9, recovered from an immunocompetent patient with severe gastroenteritis, consists of a 3,169-kb chromosome with G+C content of 62.35%. Genome analysis reveals different mechanisms potentially important for its adaptation to diverse habitats of human and freshwater fish intestines and freshwater environments. The gene contents support its phenotypic properties and suggest that amino acids and fatty acids can be used as carbon sources. The extensive variety of transporters, including multidrug efflux and heavy metal transporters as well as genes involved in chemotaxis, may enable L. hongkongensis to survive in different environmental niches. Genes encoding urease, bile salts efflux pump, adhesin, catalase, superoxide dismutase, and other putative virulence factors-such as hemolysins, RTX toxins, patatin-like proteins, phospholipase A1, and collagenases-are present. Proteomes of L. hongkongensis HLHK9 cultured at 37°C (human body temperature) and 20°C (freshwater habitat temperature) showed differential gene expression, including two homologous copies of argB, argB-20, and argB-37, which encode two isoenzymes of N-acetyl-L-glutamate kinase (NAGK)-NAGK-20 and NAGK-37-in the arginine biosynthesis pathway. NAGK-20 showed higher expression at 20°C, whereas NAGK-37 showed higher expression at 37°C. NAGK-20 also had a lower optimal temperature for enzymatic activities and was inhibited by arginine probably as negative-feedback control. Similar duplicated copies of argB are also observed in bacteria from hot springs such as Thermus thermophilus, Deinococcus geothermalis, Deinococcus radiodurans, and Roseiflexus castenholzii, suggesting that similar mechanisms for temperature adaptation may be employed by other bacteria. Genome and proteome analysis of L. hongkongensis revealed novel mechanisms for adaptations to survival at different temperatures and habitats. Copyright: © 2009 Woo et al.published_or_final_versio
Coronavirus HKU15 in respiratory tract of pigs and first discovery of coronavirus quasispecies in 5′-untranslated region
published_or_final_versio
New Hepatitis E Virus Genotype in Bactrian Camels, Xinjiang, China, 2013
published_or_final_versio
European bone mineral density loci are also associated with BMD in East-Asian populations
Most genome-wide association (GWA) studies have focused on populations of European ancestry with limited assessment of the influence of the sequence variants on populations of other ethnicities. To determine whether markers that we have recently shown to associate with Bone Mineral Density (BMD) in Europeans also associate with BMD in East-Asians we analysed 50 markers from 23 genomic loci in samples from Korea (n = 1,397) and two Chinese Hong Kong sample sets (n = 3,869 and n = 785). Through this effort we identified fourteen loci that associated with BMD in East-Asian samples using a false discovery rate (FDR) of 0.05; 1p36 (ZBTB40, P = 4.3×10 -9), 1p31 (GPR177, P = 0.00012), 3p22 (CTNNB1, P = 0.00013), 4q22 (MEPE, P = 0.0026), 5q14 (MEF2C, P = 1.3×10 -5), 6q25 (ESR1, P = 0.0011), 7p14 (STARD3NL, P = 0.00025), 7q21 (FLJ42280, P = 0.00017), 8q24 (TNFRSF11B, P = 3.4×10 -5), 11p15 (SOX6, P = 0.00033), 11q13 (LRP5, P = 0.0033), 13q14 (TNFSF11, P = 7.5×10 -5), 16q24 (FOXL1, P = 0.0010) and 17q21 (SOST, P = 0.015). Our study marks an early effort towards the challenge of cataloguing bone density variants shared by many ethnicities by testing BMD variants that have been established in Europeans, in East-Asians. © 2010 Styrkarsdottir et al.published_or_final_versio
An Exome-Chip Association Analysis in Chinese Subjects Reveals a Functional Missense Variant of GCKR That Regulates FGF21 Levels
Fibroblast growth factor 21 (FGF21) is increasingly recognized as an important metabolic regulator of glucose homeostasis. Here, we conducted an exome-chip association analysis by genotyping 5,169 Chinese individuals from a community-based cohort and two clinic-based cohorts. A custom Asian exome-chip was used to detect genetic determinants influencing circulating FGF21 levels. Single-variant association analysis interrogating 70,444 single nucleotide polymorphisms identified a novel locus, GCKR, significantly associated with circulating FGF21 levels at genome-wide significance. In the combined analysis, the common missense variant of GCKR, rs1260326 (p.Pro446Leu), showed an association with FGF21 levels after adjustment for age and sex (P = 1.61 × 10−12; β [SE] = 0.14 [0.02]), which remained significant on further adjustment for BMI (P = 3.01 × 10−14; β [SE] = 0.15 [0.02]). GCKR Leu446 may influence FGF21 expression via its ability to increase glucokinase (GCK) activity. This can lead to enhanced FGF21 expression via elevated fatty acid synthesis, consequent to the inhibition of carnitine/palmitoyl-transferase by malonyl-CoA, and via increased glucose-6-phosphate–mediated activation of the carbohydrate response element binding protein, known to regulate FGF21 gene expression. Our findings shed new light on the genetic regulation of FGF21 levels. Further investigations to dissect the relationship between GCKR and FGF21, with respect to the risk of metabolic diseases, are warranted.postprin
Determination of Cytomegalovirus Prevalence and Glycoprotein B Genotypes Among Ulcerative Colitis Patients in Ahvaz, Iran
Background: The human cytomegalovirus (HCMV) is a common pathogen which usually remains asymptomatic in the healthy adults; however, it can cause a symptomatic disease in the immunocompromised patients. The risk of infection with HCMV increases in ulcerative colitis (UC) patients as a result of receiving immunosuppressive agents.
Objectives: This study aimed to determine the prevalence and the glycoprotein B genotypes of HCMV among the patients with HCMV disease superimposed on an UC flare that required hospitalization in Imam Khomeini Hospital in Ahvaz, Iran, during 2010- 2012.
Patients and Methods: In this case-control study, formalin-fixed paraffin-embedded intestinal tissue samples were taken from 98 patients with UC disease including 53 males and 45 females (mean age ± standard deviation, 38.95 ± 17.93) and 67 control patients with noninflammatory disease who were referred to Imam Khomeini Hospital during 2010-2012. Detection of HCMV genome in intestinal samples was carried out by seminested polymerase chain reaction. Glycoprotein B genotypes were determined by sequencing.
Results: Among 98 patients with UC, only 12 (12.2%) patients were positive for HCMV genome, while the HCMV genome was not detected in any of the controls. (P = 0.002). The distribution of HCMV gB genotypes in 12 CMV-positive UC patients was as follow: gB1, 11 (91.7%) and gB3, 1 (8.3%). The most prevalent genotype in CMV-positive UC patients was gB1.
Conclusions: In this study, high prevalence of 91.7% HCMV gB1 genotype was predominant among HCMV-positive UC patients, which suggests that there might be an association between HCMV gB genotype 1 and UC disease
Ezrin interacts with the SARS coronavirus spike protein and restrains infection at the entry stage
© 2012 Millet et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Background: Entry of Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) and its envelope fusion with host cell membrane are controlled by a series of complex molecular mechanisms, largely dependent on the viral envelope glycoprotein Spike (S). There are still many unknowns on the implication of cellular factors that regulate the entry process. Methodology/Principal Findings: We performed a yeast two-hybrid screen using as bait the carboxy-terminal endodomain of S, which faces the cytosol during and after opening of the fusion pore at early stages of the virus life cycle. Here we show that the ezrin membrane-actin linker interacts with S endodomain through the F1 lobe of its FERM domain and that both the eight carboxy-terminal amino-acids and a membrane-proximal cysteine cluster of S endodomain are important for this interaction in vitro. Interestingly, we found that ezrin is present at the site of entry of S-pseudotyped lentiviral particles in Vero E6 cells. Targeting ezrin function by small interfering RNA increased S-mediated entry of pseudotyped particles in epithelial cells. Furthermore, deletion of the eight carboxy-terminal amino acids of S enhanced S-pseudotyped particles infection. Expression of the ezrin dominant negative FERM domain enhanced cell susceptibility to infection by SARS-CoV and S pseudotyped particles and potentiated S-dependent membrane fusion. Conclusions/Significance: Ezrin interacts with SARS-CoV S endodomain and limits virus entry and fusion. Our data present a novel mechanism involving a cellular factor in the regulation of S-dependent early events of infection.This work was supported by the Research Grant Council of Hong Kong (RGC#760208)and the RESPARI project of the International Network of Pasteur Institutes
- …
