1,704 research outputs found
Recommended from our members
Benchmarking 2D hydraulic models for urban flood simulations
This paper describes benchmark testing of six two-dimensional (2D) hydraulic models (DIVAST, DIVASTTVD, TUFLOW, JFLOW, TRENT and LISFLOOD-FP) in terms of their ability to simulate surface flows in a densely urbanised area. The models are applied to a 1·0 km × 0·4 km urban catchment within the city of Glasgow, Scotland, UK, and are used to simulate a flood event that occurred at this site on 30 July 2002. An identical numerical grid describing the underlying topography is constructed for each model, using a combination of airborne laser altimetry (LiDAR) fused with digital map data, and used to run a benchmark simulation. Two numerical experiments were then conducted to test the response of each model to topographic error and uncertainty over friction parameterisation. While all the models tested produce plausible results, subtle differences between particular groups of codes give considerable insight into both the practice and science of urban hydraulic modelling. In particular, the results show that the terrain data available from modern LiDAR systems are sufficiently accurate and resolved for simulating urban flows, but such data need to be fused with digital map data of building topology and land use to gain maximum benefit from the information contained therein. When such terrain data are available, uncertainty in friction parameters becomes a more dominant factor than topographic error for typical problems. The simulations also show that flows in urban environments are characterised by numerous transitions to supercritical flow and numerical shocks. However, the effects of these are localised and they do not appear to affect overall wave propagation. In contrast, inertia terms are shown to be important in this particular case, but the specific characteristics of the test site may mean that this does not hold more generally
Diversity of Lecidea (Lecideaceae, Ascomycota) species revealed by molecular data and morphological characters
The diversity of lichens, especially crustose species, in continental Antarctica is still poorly known. To overcome difficulties with the morphology based species delimitations in these groups, we employed molecular data (nuclear ITS and mitochondrial SSU rDNA sequences) to test species boundaries within the genus Lecidea. Sampling was done along a north–south transect at five different areas in the Ross Sea region (Cape Hallett, Botany Bay to Mount Suess, Taylor Valley, Darwin Area and Mount Kyffin). A total of 153 specimens were collected from 13 localities. Phylogenetic analyses also include specimens from other regions in Antarctica and non-Antarctic areas. Maximum parsimony, maximum likelihood and Bayesian analyses agreed in placing the samples from continental Antarctica into four major groups. Based on this phylogenetic estimate, we restudied the micromorphology and secondary chemistry of these four clades to evaluate the use of these characters as phylogenetic discriminators. These clades are identified as the following species Lecidea cancriformis, L. andersonii as well as the new species L. polypycnidophora Ruprecht & Türk sp. nov. and another previously unnamed clade of uncertain status, referred to as Lecidea sp. (L. UCR1)
A propensity matched case-control study comparing efficacy, safety and costs of the subcutaneous vs. transvenous implantable cardioverter defibrillator.
BACKGROUND: Subcutaneous implantable cardioverter defibrillators (S-ICD) have become more widely available. However, comparisons with conventional transvenous ICDs (TV-ICD) are scarce. METHODS: We conducted a propensity matched case-control study including all patients that underwent S-ICD implantation over a five-year period in a single tertiary centre. Controls consisted of all TV-ICD implant patients over a contemporary time period excluding those with pacing indication, biventricular pacemakers and those with sustained monomorphic ventricular tachycardia requiring anti-tachycardia pacing. Data was collected on device-related complications and mortality rates. A cost efficacy analysis was performed. RESULTS: Sixty-nine S-ICD cases were propensity matched to 69 TV-ICD controls. During a mean follow-up of 31±19 (S-ICD) and 32±21months (TV-ICD; p=0.88) there was a higher rate of device-related complications in the TV-ICD group predominantly accounted for by lead failures (n=20, 29% vs. n=6, 9%; p=0.004). The total mean cost for each group, including the complication-related costs was £9967±4511 (17,243±2444) in the TV-ICD and S-ICD groups respectively (p=0.0001). Even though more expensive S-ICD was associated with a relative risk reduction of device-related complication of 70% with a HR of 0.30 (95%CI 0.12-0.76; p=0.01) compared to TV-ICDs. CONCLUSIONS: TV-ICDs are associated with increased device-related complication rates compared to a propensity matched S-ICD group during a similar follow-up period. Despite the existing significant difference in unit cost of the S-ICD, overall S-ICD costs may be mitigated versus TV-ICDs over a longer follow-up period
Stage progression and neurological symptoms in Trypanosoma brucei rhodesiense sleeping sickness: role of the CNS inflammatory response
Background: Human African trypanosomiasis progresses from an early (hemolymphatic) stage, through CNS invasion to the late (meningoencephalitic) stage. In experimental infections disease progression is associated with neuroinflammatory responses and neurological symptoms, but this concept requires evaluation in African trypanosomiasis patients, where correct diagnosis of the disease stage is of critical therapeutic importance.
Methodology/Principal Findings: This was a retrospective study on a cohort of 115 T.b.rhodesiense HAT patients recruited in Eastern Uganda. Paired plasma and CSF samples allowed the measurement of peripheral and CNS immunoglobulin and of CSF cytokine synthesis. Cytokine and immunoglobulin expression were evaluated in relation to disease duration, stage progression and neurological symptoms. Neurological symptoms were not related to stage progression (with the exception of moderate coma). Increases in CNS immunoglobulin, IL-10 and TNF-α synthesis were associated with stage progression and were mirrored by a reduction in TGF-β levels in the CSF. There were no significant associations between CNS immunoglobulin and cytokine production and neurological signs of disease with the exception of moderate coma cases. Within the study group we identified diagnostically early stage cases with no CSF pleocytosis but intrathecal immunoglobulin synthesis and diagnostically late stage cases with marginal CSF pleocytosis and no detectable trypanosomes in the CSF.
Conclusions: Our results demonstrate that there is not a direct linkage between stage progression, neurological signs of infection and neuroinflammatory responses in rhodesiense HAT. Neurological signs are observed in both early and late stages, and while intrathecal immunoglobulin synthesis is associated with neurological signs, these are also observed in cases lacking a CNS inflammatory response. While there is an increase in inflammatory cytokine production with stage progression, this is paralleled by increases in CSF IL-10. As stage diagnostics, the CSF immunoglobulins and cytokines studied do not have sufficient sensitivity to be of clinical value
MM Algorithms for Geometric and Signomial Programming
This paper derives new algorithms for signomial programming, a generalization
of geometric programming. The algorithms are based on a generic principle for
optimization called the MM algorithm. In this setting, one can apply the
geometric-arithmetic mean inequality and a supporting hyperplane inequality to
create a surrogate function with parameters separated. Thus, unconstrained
signomial programming reduces to a sequence of one-dimensional minimization
problems. Simple examples demonstrate that the MM algorithm derived can
converge to a boundary point or to one point of a continuum of minimum points.
Conditions under which the minimum point is unique or occurs in the interior of
parameter space are proved for geometric programming. Convergence to an
interior point occurs at a linear rate. Finally, the MM framework easily
accommodates equality and inequality constraints of signomial type. For the
most important special case, constrained quadratic programming, the MM
algorithm involves very simple updates.Comment: 16 pages, 1 figur
Adenosine-guided pulmonary vein isolation versus conventional pulmonary vein isolation in patients undergoing atrial fibrillation ablation: An updated meta-analysis
BACKGROUND: Recurrent atrial fibrillation episodes following pulmonary vein isolation (PVI) are frequently due to reconnection of PVs. Adenosine can unmask dormant conduction, leading to additional ablation to improve AF-free survival. We performed a meta-analysis of the literature to assess the role of adenosine testing in patients undergoing atrial fibrillation (AF) ablation.
METHODS: PubMed, EMBASE, and Cochrane databases were searched through until December 2015 for studies reporting on the role of adenosine guided-PVI versus conventional PVI in AF ablation.
RESULTS: Eleven studies including 4099 patients undergoing AF ablation were identified to assess the impact of adenosine testing. Mean age of the population was 61 ± 3 years: 25% female, 70% with paroxysmal AF. Follow up period of 12.5 ± 5.1 months. A significant benefit was observed in the studies published before 2013 (OR = 1.75; 95%CI 1.32–2.33, p < 0.001, I2 = 11%), retrospective (OR = 2.05; 95%CI 1.47–2.86, p < 0.001, I2 = 0%) and single-centre studies (OR = 1.58; 95%CI 1.19–2.10, p = 0.002, I2 = 30%). However, analysis of studies published since 2013 (OR = 1.41; 95% CI 0.87–2.29, p = 0.17, I2 = 75%) does not support any benefit from an adenosine-guided strategy. Similar findings were observed by pooling prospective case-control (OR = 1.39; 95%CI 0.93–2.07, p = 0.11, I2 = 75%), and prospective randomized controlled studies (OR = 1.62; 95%CI 0.81–3.24, p = 0.17, I2 = 86%). Part of the observed high heterogeneity can be explained by parameters such as dormant PVs percentage, use of new technology, improvement of center/operator experience, patients' characteristics including gender, age, and AF type.
CONCLUSIONS: Pooling of contemporary data from high quality prospective case–control & prospective randomized controlled studies fails to show the benefit of adenosine-guided strategy to improve AF ablation outcomes
Inherited biotic protection in a Neotropical pioneer plant
Chelonanthus alatus is a bat-pollinated, pioneer Gentianaceae that clusters in patches where still-standing, dried-out stems are interspersed among live individuals. Flowers bear circum-floral nectaries (CFNs) that are attractive to ants, and seed dispersal is both barochorous and anemochorous. Although, in this study, live individuals never sheltered ant colonies, dried-out hollow stems - that can remain standing for 2 years - did. Workers from species nesting in dried-out stems as well as from ground-nesting species exploited the CFNs of live C. alatus individuals in the same patches during the daytime, but were absent at night (when bat pollination occurs) on 60.5% of the plants. By visiting the CFNs, the ants indirectly protect the flowers - but not the plant foliage - from herbivorous insects. We show that this protection is provided mostly by species nesting in dried-out stems, predominantly Pseudomyrmex gracilis. That dried-out stems remain standing for years and are regularly replaced results in an opportunistic, but stable association where colonies are sheltered by one generation of dead C. alatus while the live individuals nearby, belonging to the next generation, provide them with nectar; in turn, the ants protect their flowers from herbivores. We suggest that the investment in wood by C. alatus individuals permitting stillstanding, dried-out stems to shelter ant colonies constitutes an extended phenotype because foraging workers protect the flowers of live individuals in the same patch. Also, through this process these dried-out stems indirectly favor the reproduction (and so the fitness) of the next generation including both their own offspring and that of their siblings, alladding up to a potential case of inclusive fitness in plants
Right ventricular function is a predictor for sustained ventricular tachycardia requiring anti-tachycardic pacing in arrhythmogenic ventricular cardiomyopathy: insight into transvenous vs. subcutaneous implantable cardioverter defibrillator insertion
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
A half-site multimeric enzyme achieves its cooperativity without conformational changes
Cooperativity is a feature many multimeric proteins use to control activity. Here we show that the bacterial heptose isomerase GmhA displays homotropic positive and negative cooperativity among its four protomers. Most similar proteins achieve this through conformational changes: GmhA instead employs a delicate network of hydrogen bonds, and couples pairs of active sites controlled by a unique water channel. This network apparently raises the Lewis acidity of the catalytic zinc, thus increasing the activity at one active site at the cost of preventing substrate from adopting a reactive conformation at the paired negatively cooperative site – a “half-site” behavior. Our study establishes the principle that multimeric enzymes can exploit this cooperativity without conformational changes to maximize their catalytic power and control. More broadly, this subtlety by which enzymes regulate functions could be used to explore new inhibitor design strategies
- …
