210 research outputs found
Complex circular subsidence structures in tephra deposited on large blocks of ice: Varða tuff cone, Öræfajökull, Iceland
Several broadly circular structures up to 16 m in diameter, into which higher strata have sagged and locally collapsed, are present in a tephra outcrop on southwest Öræfajökull, southern Iceland. The tephra was sourced in a nearby basaltic tuff cone at Varða. The structures have not previously been described in tuff cones, and they probably formed by the melting out of large buried blocks of ice emplaced during a preceding jökulhlaup that may have been triggered by a subglacial eruption within the Öræfajökull ice cap. They are named ice-melt subsidence structures, and they are analogous to kettle holes that are commonly found in proglacial sandurs and some lahars sourced in ice-clad volcanoes. The internal structure is better exposed in the Varða examples because of an absence of fluvial infilling and reworking, and erosion of the outcrop to reveal the deeper geometry. The ice-melt subsidence structures at Varða are a proxy for buried ice. They are the only known evidence for a subglacial eruption and associated jökulhlaup that created the ice blocks. The recognition of such structures elsewhere will be useful in reconstructing more complete regional volcanic histories as well as for identifying ice-proximal settings during palaeoenvironmental investigations
Covalent polyester colouration by in situ chromophore creation
The permanent colouration of a polyester by straightforward azo coupling is disclosed. Uniquely, the chromophore is created only upon successful polymer modification with a non-coloured molecule (in situ colouration), which confirms successful polymer adaptation and ensures that coloured waste is not produced. The method of colouration, which may feasibly be applied for the coloration of a wide-range of step-growth polyesters, yielded a polymer capable of preventing indigo deposition onto a range of fabrics, offering potential use within advanced detergent formulations
Correction: Thermoresponsive polysarcosine-based nanoparticles
Correction for ‘Thermoresponsive polysarcosine-based nanoparticles’ by Huayang Yu et al., J. Mater. Chem. B, 2019, 7, 4217–4223
Camels and Climate Resilience: Adaptation in Northern Kenya
In the drylands of Africa, pastoralists have been facing new challenges, including those related to environmental shocks and stresses. In northern Kenya, under conditions of reduced rainfall and more frequent droughts, one response has been for pastoralists to focus increasingly on camel herding. Camels have started to be kept at higher altitudes and by people who rarely kept camels before. The development has been understood as a climate change adaptation strategy and as a means to improve climate resilience. Since 2003, development organizations have started to further the trend by distributing camels in the region. Up to now, little has been known about the nature of, reasons for, or ramifications of the increased reliance on camels. The paper addresses these questions and concludes that camels improve resilience in this dryland region, but only under certain climate change scenarios, and only for some groups.This study was funded by The Royal Geographical Society with Institute of British Geographers Thesiger-Oman Fellowship
Meticulous Doxorubicin Release from pH‐responsive Nanoparticles Entrapped within an Injectable Thermoresponsive Depot.
The dual stimuli‐controlled release of doxorubicin from gel‐embedded nanoparticles is reported. Non‐cytotoxic polymer nanoparticles are formed from poly(ethylene glycol)‐ b ‐poly(benzyl glutamate) that, uniquely, contain a central ester link. This connection renders the nanoparticles pH‐responsive, enabling extensive doxorubicin release in acidic solutions (pH 6.5), but not in solutions of physiological pH (pH 7.4). Doxorubicin loaded nanoparticles were found to be stable for at least 31 days and lethal against the three breast cancer cell lines tested. Furthermore, doxorubicin loaded nanoparticles could be incorporated within a thermoresponsive poly(2‐hydroxypropyl methacrylate) gel depot, which forms immediately upon injection of poly(2‐hydroxypropyl methacrylate) in DMSO solution into aqueous solution. The combination of the poly(2‐hydroxypropyl methacrylate) gel and poly(ethylene glycol)‐ b ‐poly(benzyl glutamate) nanoparticles yields an injectable doxorubicin delivery system that facilities near‐complete drug release when maintained at elevated temperatures (37 °C) in acidic solution (pH 6.5). In contrast, negligible payload release occurs when the material is stored at room temperature in non‐acidic solution (pH 7.4). The system has great potential as a vehicle for the prolonged, site‐specific, release of chemotherapeutics
Post-depositional fracturing and subsidence of pumice flow deposits: Lascar Volcano, Chile
Unconsolidated pyroclastic flow deposits of the
1993 eruption of Lascar Volcano, Chile, have, with time,
become increasingly dissected by a network of deeply
penetrating fractures. The fracture network comprises
orthogonal sets of decimeter-wide linear voids that form a
pseudo-polygonal grid visible on the deposit surface. In this
work, we combine shallow surface geophysical imaging
tools with remote sensing observations and direct field
measurements of the deposit to investigate these fractures
and their underlying causal mechanisms. Based on ground
penetrating radar images, the fractures are observed to have
propagated to depths of up to 10 m. In addition, orbiting radar interferometry shows that deposit subsidence of up to
1 cm/year occurred between 1993 and 1996 with continued
subsidence occurring at a slower rate thereafter. In situ
measurements show that 1 m below the surface, the 1993
deposits remain 5°C to 15°C hotter, 18 years after
emplacement, than adjacent deposits. Based on the observed
subsidence as well as estimated cooling rates, the fractures are
inferred to be the combined result of deaeration, thermal
contraction, and sedimentary compaction in the months to
years following deposition. Significant environmental factors,
including regional earthquakes in 1995 and 2007, accelerated
settling at punctuated moments in time. The spatially variable
fracture pattern relates to surface slope and lithofacies
variations as well as substrate lithology. Similar fractures
have been reported in other ignimbrites but are generally
exposed only in cross section and are often attributed to
formation by external forces. Here we suggest that such
interpretations should be invoked with caution, and deformation
including post-emplacement subsidence and fracturing of
loosely packed ash-rich deposits in the months to years postemplacement
is a process inherent in the settling of pyroclastic
material
Investigation of cerebral autoregulation in the newborn piglet during anaesthesia and surgery
The relationship between cerebral autoregulation (CA) and the neurotoxic effects of anaesthesia with and without surgery is investigated. Newborn piglets were randomly assigned to receive either 6 h of anaesthesia (isoflurane) or the same with an additional hour of minor surgery. The effect of the spontaneous changes in mean arterial blood pressure (MABP) on the cerebral haemodynamics (oxy- and deoxy-haemoglobin, HbO2 and Hb) was measured using transverse broadband near-infrared spectroscopy (NIRS). A marker for impaired CA, concordance between MABP and intravascular oxygenation (HbD = HbO2 - Hb) in the ultra-low frequency domain (0.0018-0.0083 Hz), was assessed using coherence analysis. Presence of CA impairment was not significant but found to increase with surgical exacerbation. The impairment did not correlate with histological outcome (presence of cell death, apoptosis and microglial activation in the brain)
Institutional Mergers in Ireland
The importance of knowledge as a driver of social and economic growth and prosperity, and the increasingly competitive “global race for knowledge and talent” (Hazelkorn, Higher Educ Manage Policy 21(1):55–76, 2009) have combined to transform the higher education landscape, forcing national governments and higher education institutions (HEIs) to pursue new ways of addressing the challenges of a multi-polar world order. Rising demand for higher education (HE), as part of the broader shift from elite to mass to universal participation, has led to the emergence of new models of provision. At the same time, many governments face restrictions on public resources due to high levels of public and private debt; accordingly, system-level and institutional restructuring has been contemplated as a way to enhance quality, performance and efficiency
Ancient origins determine global biogeography of hot and cold desert cyanobacteria
Factors governing large-scale spatio-temporal distribution of microorganisms remain unresolved, yet are pivotal to understanding ecosystem value and function. Molecular genetic analyses have focused on the influence of niche and neutral processes in determining spatial patterns without considering the temporal scale. Here, we use temporal phylogenetic analysis calibrated using microfossil data for a globally sampled desert cyanobacterium, Chroococcidiopsis, to investigate spatio-temporal patterns in microbial biogeography and evolution. Multilocus phylogenetic associations were dependent on contemporary climate with no evidence for distance-related patterns. Massively parallel pyrosequencing of environmental samples confirmed that Chroococcidiopsis variants were specific to either hot or cold deserts. Temporally scaled phylogenetic analyses showed no evidence of recent inter-regional gene flow, indicating populations have not shared common ancestry since before the formation of modern continents. These results indicate that global distribution of desert cyanobacteria has not resulted from widespread contemporary dispersal but is an ancient evolutionary legacy. This highlights the importance of considering temporal scales in microbial biogeography
Intrinsic Structural Disorder Confers Cellular Viability on Oncogenic Fusion Proteins
Chromosomal translocations, which often generate chimeric proteins by fusing segments of two distinct genes, represent the single major genetic aberration leading to cancer. We suggest that the unifying theme of these events is a high level of intrinsic structural disorder, enabling fusion proteins to evade cellular surveillance mechanisms that eliminate misfolded proteins. Predictions in 406 translocation-related human proteins show that they are significantly enriched in disorder (43.3% vs. 20.7% in all human proteins), they have fewer Pfam domains, and their translocation breakpoints tend to avoid domain splitting. The vicinity of the breakpoint is significantly more disordered than the rest of these already highly disordered fusion proteins. In the unlikely event of domain splitting in fusion it usually spares much of the domain or splits at locations where the newly exposed hydrophobic surface area approximates that of an intact domain. The mechanisms of action of fusion proteins suggest that in most cases their structural disorder is also essential to the acquired oncogenic function, enabling the long-range structural communication of remote binding and/or catalytic elements. In this respect, there are three major mechanisms that contribute to generating an oncogenic signal: (i) a phosphorylation site and a tyrosine-kinase domain are fused, and structural disorder of the intervening region enables intramolecular phosphorylation (e.g., BCR-ABL); (ii) a dimerisation domain fuses with a tyrosine kinase domain and disorder enables the two subunits within the homodimer to engage in permanent intermolecular phosphorylations (e.g., TFG-ALK); (iii) the fusion of a DNA-binding element to a transactivator domain results in an aberrant transcription factor that causes severe misregulation of transcription (e.g. EWS-ATF). Our findings also suggest novel strategies of intervention against the ensuing neoplastic transformations
- …
