2,984 research outputs found

    Equal Employment Opportunity Commission v. Starbucks Corporation

    Get PDF

    Tectonic Implications of Small Earthquakes in the Central Transverse Ranges

    Get PDF
    Fault-plane solutions for 22 small (local magnitude (M_L ≤ 4.6) earthquakes in the central Transverse Ranges were determined using an azimuthally varying crustal model. The dominant type of faulting observed is reverse faulting on east-striking planes, which suggests a regional stress field characterized by north-south compression. Some strike-slip faulting also occurs. There is some indication that strike-slip earthquakes may be more common than reverse-slip earthquakes during episodes of crustal dilatation. The rate of north-south crustal shortening attributable to small-0earthquake deformation during 1974-76 is two orders of magnitude smaller than the north-south contraction of 0.3 parts per million per year measured at the surface. The scatter in earthquake hypocenters and the general inconsistency of focal mechanisms with geologically determined motions on nearby major faults indicate that the small earthquakes in this region are not associated with large-scale block movements along major fault systems. Rather, they appear to represent fracturing along random minor zones of weakness in response to the regional stress field or, alternatively, small-scale block movements that are below the resolution of this study. Earthquakes in the San Gabriel Mountains north of the Santa Susana-Sierra Madre-Cucamonga frontal fault system tend to concentrate near the eastern and western ends of the range, where good evidence for late Quaternary movement along the frontal faults has been found. Seismicity is markedly lower north of the central section of the frontal fault system, where evidence for late Quaternary movement is lacking

    Waveforms and spectra of preshocks and aftershocks of the 1979 Imperial Valley, California, Earthquake: evidence for fault hetergeneity

    Get PDF
    We have compared digitally-recorded waveforms of M_L 2.0–2.8 earthquakes that occurred in two small areas along the Imperial fault before and after it broke in the ML 6.6 Imperial Valley earthquake on October 15, 1979. Eight preshocks (1977–1979) from a 4½ by 1½ km area centered 4 km SE of the mainshock epicenter have strikingly similar waveforms over the entire record length (∼30 s), with an average peak cross correlation between seismograms of 0.74. The seismograms are well correlated at frequencies up to at least 4 Hz. This implies similar source mechanisms and hypocenters within ¼ of the 4-Hz wavelengths, i.e., <200–400 m. Five aftershocks from the same area show an average peak cross correlation between seismograms of only 0.23. Any associated changes in mechanism must be small because they are not reflected in the first motion data. Analysis of frequency content of these events using bandpass-filtering techniques showed no systematic temporal changes in spectral shape. Ten preshocks and 24 aftershocks from a 1½ by 2 km source area centered along the fault 16 km NW of the mainshock epicenter were also studied. First motion data suggest that all of the aftershocks and a swarm of six preshocks on December 7–9, 1978, were associated with the main fault but that four earlier preshocks were not. The six preshocks on December 7–9, 1978, were tightly clustered, as evidenced by the strong similarity of the waveforms (most peak cross correlations ≥0.6). During this swarm the 8- to 16-Hz spectral amplitude increased relative to the 1- to 2-Hz spectral amplitude over the whole record length by about a factor of 3, suggesting a systematic increase in stress drop. Groups of like events are also present among the aftershocks in this data set. The average peak correlation for pairs of aftershocks, 0.43, is almost the same as that for pairs of preshocks, 0.45, if all 10 preshocks are included. However, several sources appear to have been active simultaneously during the aftershock period so that no more than two to three consecutive aftershocks have maximum cross correlations ≥0.6. The highly localized sources characterized by waveform similarity may represent fault asperities or clusters of asperities. Our observations are consistent with a decrease in the number of these asperities as the weaker ones fail under increasing stress during the intervals between large earthquakes

    Venus lower atmosphere heat balance

    Get PDF
    Pioneer Venus observations of temperatures and radiative fluxes are examined in an attempt to understand the thermal balance of the lower atmosphere. If all observations are correct and the probe sites are typical of the planet, the second law of thermodynamics requires that the bulk of the lower atmosphere heating must come from a source other than direct sunlight or a thermally driven atmospheric circulation. Neither the so-called greenhouse models nor the mechanical heating models are consistent with this interpretation of the observations. One possible interpretation is that two out of the three probe sites are atypical of the planet. Additional lower atmosphere heat sources provide another possible interpretation. These include a planetary heat flux that is 250 times the earth's, a secular cooling of the atmosphere, and a chemically energetic rain carrying solar energy from the clouds to the surface. Other data make these interpretations seem unlikely, so measurement error remains a serious possibility

    Contemporary tectonics of the Wasatch front region, Utah, from earthquake focal mechanisms

    Get PDF
    We have completed a comprehensive study of focal mechanisms of digitally recorded earthquakes (M, -_< 4.4) that occurred in the Wasatch front region in Utah during 1980 to 1986. Single-event solutions for 24 events were determined using recently revised crustal models and a computerized grid-search technique. Overall, the mechanisms show predominantly normal faulting on N-S-striking nodal planes of moderate to steep dip (>30°). Tension-axis azimuths average 96 ° _+ 12% Thus, in general, the mechanisms indicate E-W to ESE-WNW crustal extension and vertical crustal shortening. Oblique slip, when observed, is characterized by left-lateral motion on planes striking N to NE or right-lateral motion on planes striking N to NW. Most of the mechanisms with significant amounts of oblique-slip motion occur in the southern part of the study area, where compression- axis orientations range from near vertical to near horizontal. Thus, the mechanisms suggest a possible change in stress regime from north to south along the Wasatch front. Despite geologic evidence for low-angle faults in the study area, shallowly dipping nodal planes are relatively uncommon.This research was supported by the U.S. Geological Survey, Department of the Interior, under award numbers 14-08-0001-Gl163 and 14-08-0001- G1349. Partial support also came from a scholarship awarded by the Society of Exploration Geophysicists and sponsored by the Sohio Petroleum Company.Peer Reviewe

    Does Dutch a-scrambling involve movement? Evidence from antecedent priming

    Get PDF
    The present study focuses on A-scrambling in Dutch, a local word-order alternation that typically signals the discourse-anaphoric status of the scrambled constituent. We use cross-modal priming to investigate whether an A-scrambled direct object gives rise to antecedent reactivation effects in the position where a movement theory would postulate a trace. Our results indicate that this is not the case, thereby providing support for a base-generation analysis of A-scrambling in Dutch

    College Students’ Responses to Antismoking Messages: Denial, Defiance, and Other Boomerang Effects

    Get PDF
    Despite the success of antismoking campaigns that aim to prevent young teens from smoking, this qualitative study provides strong evidence that different initiatives are needed for college students, particularly those who already smoke. When asked for responses to current antismoking messages, nonsmokers generally championed the cause; however, smokers often responded with anger, defiance, denial, and other negative responses. Consumers who respond in this manner are not well served by existing strategies, and money used for such campaigns could be better spent. New strategies are offered in hopes that antismoking campaigns can communicate more effectively with one high-risk group—college student smokers
    corecore