85 research outputs found

    Perceived control over condom use among sex workers in Madagascar: a cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Women's perceived control over condom use has been found to be an important determinant of actual condom use in some studies. However, many existing analyses used cross-sectional data and little quantitative information exists to characterize the relationships between perceived control and actual condom use among sex worker populations.</p> <p>Methods</p> <p>We assessed the association between measures of perceived condom use control and self-reported use of male condoms employing data from a longitudinal pilot study among 192 sex workers in Madagascar.</p> <p>Results</p> <p>In multivariable models, a lack of perceived control over condom use with a main partner and having a main partner ever refuse to use a condom when asked were both associated with an increased number of sex acts unprotected by condoms in the past week with a main partner (RR 1.86; 95% CI 1.21-2.85; RR 1.34; 95% CI 1.03-1.73, respectively). Conversely, no measure of condom use control was significantly associated with condom use with clients.</p> <p>Conclusion</p> <p>Perceived control over condom use was an important determinant of condom use with main partners, but not clients, among sex workers in Madagascar. Programs working with sex workers should reach out to main and commercial partners of sex workers to increase male condom use.</p

    Impact of Daily Thermocycles on Hatching Rhythms, Larval Performance and Sex Differentiation of Zebrafish

    Get PDF
    In the wild, water temperature cycles daily: it warms up after sunrise, and cools rapidly after sunset. Surprisingly, the impact of such daily thermocycles during the early development of fish remains neglected. We investigated the influence of constant vs daily thermocycles in zebrafish, from embryo development to sexual differentiation, by applying four temperature regimens: two constant (24&deg;C and 28&deg;C) and two daily thermocycles: 28:24&deg;C, TC (thermophase coinciding with daytime, and cryophase coinciding with night-time) and 24:28&deg;C, CT (opposite to TC) in a 12:12 h light:dark cycle (LD). Embryo development was temperature-dependent but enhanced at 28&deg;C and TC. Hatching rhythms were diurnal (around 4 h after lights on), but temperature- and cycle-sensitive, since hatching occurred sooner at 28&deg;C (48 hours post fertilization; hpf) while it was delayed at 24&deg;C (96 hpf). Under TC, hatching occurred at 72 hpf, while under CT hatching displayed two peaks (at 70 hpf and 94 hpf). In constant light (LL) or darkness (DD), hatching rhythms persisted with tau close to 24 h, suggesting a clock-controlled "gating" mechanism. Under 28&deg;C or TC, larvae showed the best performance (high growth and survival, and low malformations). The sex ratio was strongly influenced by temperature, as the proportion of females was higher in CT and TC (79 and 83% respectively), contrasting with 28&deg;C and 24&deg;C, which led to more males (83 and 76%). Ovarian aromatase (cyp19a) expression in females was highest in TC and CT (6.5 and 4.6 fold higher than at 28&deg;C, respectively); while anti-m&uuml;llerian hormone (amh) expression in males increased in testis at 24&deg;C (3.6 fold higher compared to TC) and particularly at 28&deg;C (14.3 fold increase). Taken together, these findings highlight the key role of environmental cycles during early development, which shaped the daily rhythms in fish embryo and larvae, and ultimately influenced sex differentiation

    Methodologies used to estimate tobacco-attributable mortality: a review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One of the most important measures for ascertaining the impact of tobacco on a population is the estimation of the mortality attributable to its use. To measure this, a number of indirect methods of quantification are available, yet there is no consensus as to which furnishes the best information. This study sought to provide a critical overview of the different methods of attribution of mortality due to tobacco consumption.</p> <p>Method</p> <p>A search was made in the Medline database until March 2005 in order to obtain papers that addressed the methodology employed for attributing mortality to tobacco use.</p> <p>Results</p> <p>Of the total of 7 methods obtained, the most widely used were the prevalence methods, followed by the approach proposed by Peto et al, with the remainder being used in a minority of studies.</p> <p>Conclusion</p> <p>Different methodologies are used to estimate tobacco attributable mortality, but their methodological foundations are quite similar in all. Mainly, they are based on the calculation of proportional attributable fractions. All methods show limitations of one type or another, sometimes common to all methods and sometimes specific.</p

    Models of chronic obstructive pulmonary disease

    Get PDF
    Chronic obstructive pulmonary disease (COPD) is a major global health problem and is predicted to become the third most common cause of death by 2020. Apart from the important preventive steps of smoking cessation, there are no other specific treatments for COPD that are as effective in reversing the condition, and therefore there is a need to understand the pathophysiological mechanisms that could lead to new therapeutic strategies. The development of experimental models will help to dissect these mechanisms at the cellular and molecular level. COPD is a disease characterized by progressive airflow obstruction of the peripheral airways, associated with lung inflammation, emphysema and mucus hypersecretion. Different approaches to mimic COPD have been developed but are limited in comparison to models of allergic asthma. COPD models usually do not mimic the major features of human COPD and are commonly based on the induction of COPD-like lesions in the lungs and airways using noxious inhalants such as tobacco smoke, nitrogen dioxide, or sulfur dioxide. Depending on the duration and intensity of exposure, these noxious stimuli induce signs of chronic inflammation and airway remodelling. Emphysema can be achieved by combining such exposure with instillation of tissue-degrading enzymes. Other approaches are based on genetically-targeted mice which develop COPD-like lesions with emphysema, and such mice provide deep insights into pathophysiological mechanisms. Future approaches should aim to mimic irreversible airflow obstruction, associated with cough and sputum production, with the possibility of inducing exacerbations

    Design of the ECCE Detector for the Electron Ion Collider

    Get PDF
    Preprint submitted to Nuclear Instruments and Methods A. The file archived on this institutional repository has not been certified by peer review.32 pages, 29 figures, 9 tablesThe EIC Comprehensive Chromodynamics Experiment (ECCE) detector has been designed to address the full scope of the proposed Electron Ion Collider (EIC) physics program as presented by the National Academy of Science and provide a deeper understanding of the quark-gluon structure of matter. To accomplish this, the ECCE detector offers nearly acceptance and energy coverage along with excellent tracking and particle identification. The ECCE detector was designed to be built within the budget envelope set out by the EIC project while simultaneously managing cost and schedule risks. This detector concept has been selected to be the basis for the EIC project detector.Office of Science in the Department of Energy, the National Science Foundation, and the Los Alamos National Laboratory Laboratory Directed Research and Development (LDRD) 20200022DR; This research used resources of the Compute and Data Environment for Science (CADES) at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05- 00OR22725. The work of AANL group are supported by the Science Committee of RA, in the frames of the research project # 21AG-1C028. And we gratefully acknowledge that support of Brookhaven National Lab and the Thomas Jefferson National Accelerator Facility which are operated under contracts DESC0012704 and DE-AC05-06OR23177 respectivel

    AI-assisted optimization of the ECCE tracking system at the Electron Ion Collider

    Get PDF
    arXiv preprint [v2] Fri, 20 May 2022 03:23:44 UTC (2,296 KB) made available under a Creative Commons (CC BY) Attribution Licence, now in press, published by Elsevier: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, available online 17 November 2022 at: https://doi.org/10.1016/j.nima.2022.167748The Electron-Ion Collider (EIC) is a cutting-edge accelerator facility that will study the nature of the "glue" that binds the building blocks of the visible matter in the universe. The proposed experiment will be realized at Brookhaven National Laboratory in approximately 10 years from now, with detector design and R&D currently ongoing. Notably, EIC is one of the first large-scale facilities to leverage Artificial Intelligence (AI) already starting from the design and R&D phases. The EIC Comprehensive Chromodynamics Experiment (ECCE) is a consortium that proposed a detector design based on a 1.5T solenoid. The EIC detector proposal review concluded that the ECCE design will serve as the reference design for an EIC detector. Herein we describe a comprehensive optimization of the ECCE tracker using AI. The work required a complex parametrization of the simulated detector system. Our approach dealt with an optimization problem in a multidimensional design space driven by multiple objectives that encode the detector performance, while satisfying several mechanical constraints. We describe our strategy and show results obtained for the ECCE tracking system. The AI-assisted design is agnostic to the simulation framework and can be extended to other sub-detectors or to a system of sub-detectors to further optimize the performance of the EIC detector.Office of Nuclear Physics in the Office of Science in the Department of Energy; National Science Foundation, and the Los Alamos National Laboratory Laboratory Directed Research and Development (LDRD) 20200022DR
    corecore