4,308 research outputs found
Decoherence of quantum wavepackets due to interaction with conformal spacetime fluctuations
One of the biggest problems faced by those attempting to combine quantum
theory and general relativity is the experimental inaccessibility of the
unification scale. In this paper we show how incoherent conformal waves in the
gravitational field, which may be produced by quantum mechanical zero-point
fluctuations, interact with the wavepackets of massive particles. The result of
this interaction is to produce decoherence within the wavepackets which could
be accessible in experiments at the atomic scale.
Using a simple model for the coherence properties of the gravitational field
we derive an equation for the evolution of the density matrix of such a
wavepacket. Following the primary state diffusion programme, the most promising
source of spacetime fluctuations for detection are the above zero-point energy
fluctuations. According to our model, the absence of intrinsic irremoveable
decoherence in matter interferometry experiments puts bounds on some of the
parameters of quantum gravity theories. Current experiments give \lambda > 18.
, where \lambda t_{Planck} is an effective cut-off for the validity of
low-energy quantum gravity theories.Comment: REVTeX forma
An analytic model for the epoch of halo creation
In this paper we describe the Bayesian link between the cosmological mass
function and the distribution of times at which isolated halos of a given mass
exist. By assuming that clumps of dark matter undergo monotonic growth on the
time-scales of interest, this distribution of times is also the distribution of
`creation' times of the halos. This monotonic growth is an inevitable aspect of
gravitational instability. The spherical top-hat collapse model is used to
estimate the rate at which clumps of dark matter collapse. This gives the prior
for the creation time given no information about halo mass. Applying Bayes'
theorem then allows any mass function to be converted into a distribution of
times at which halos of a given mass are created. This general result covers
both Gaussian and non-Gaussian models. We also demonstrate how the mass
function and the creation time distribution can be combined to give a joint
density function, and discuss the relation between the time distribution of
major merger events and the formula calculated. Finally, we determine the
creation time of halos within three N-body simulations, and compare the link
between the mass function and creation rate with the analytic theory.Comment: 7 pages, 2 figures, submitted to MNRA
First phase testing of solar thermal engine at United Stirling
The objective of the program is to demonstrate that the Stirling engine is a practical efficient and reliable energy converter when integrated with a parabolic dish concentrator, and that it has the potential of being cost competitive with fossil fueled electric generating systems of today. The engine, with its receiver (solar heat exchanger), alternator and control system, is described
The Halo Formation Rate and its link to the Global Star Formation Rate
The star formation history of the universe shows strong evolution with
cosmological epoch. Although we know mergers between galaxies can cause
luminous bursts of star formation, the relative importance of such mergers to
the global star formation rate (SFR) is unknown. We present a simple analytic
formula for the rate at which halos merge to form higher-mass systems, derived
from Press-Schechter theory and confirmed by numerical simulations (for high
halo masses). A comparison of the evolution in halo formation rate with the
observed evolution in the global SFR indicates that the latter is largely
driven by halo mergers at z>1. Recent numerical simulations by Kolatt et al.
(1999) and Knebe & Muller (1999) show how merging systems are strongly biased
tracers of mass fluctuations, thereby explaining the strong clustering observed
for Lyman-break galaxies without any need to assume that Lyman-break galaxies
are associated only with the most massive systems at z~3.Comment: 4 pages, 2 figures. To appear in `The Hy-redshift universe: Galaxy
formation and evolution at high redshift' eds. A.J. Bunker and W.J.M. van
Breuge
Recommended from our members
Isolation, characterisation and experimental evolution of phage that infect the horse chestnut tree pathogen, Pseudomonas syringae pv. aesculi
Bleeding canker of horse chestnut trees is a bacterial disease, caused by the bacterium Pseudomonas syringae pv. aesculi, estimated to be present in ~ 50% of UK horse chestnut trees. Currently, the disease has no cure and tree removal can be a common method of reducing inoculum and preventing spread. One potential method of control could be achieved using naturally occurring bacteriophages infective to the causative bacterium. Bacteriophages were isolated from symptomatic and asymptomatic horse chestnut trees in three locations in the South East of England. The phages were found to be belonging to both the Myoviridae and Podoviridae families by RAPD PCR and transmission electron microscopy. Experimental coevolution was carried out to understand the dynamics of bacterial resistance and phage infection and to determine whether new infective phage genotypes would emerge. The phages exhibited different coevolution patterns with their bacterial hosts across time. This approach could be used to generate novel phages for use in biocontrol cocktails in an effort to reduce the potential emergence of bacterial resistance
Using galaxy pairs as cosmological tracers
The Alcock-Paczynski (AP) effect uses the fact that, when analyzed with the
correct geometry, we should observe structure that is statistically isotropic
in the Universe. For structure undergoing cosmological expansion with the
background, this constrains the product of the Hubble parameter and the angular
diameter distance. However, the expansion of the Universe is inhomogeneous and
local curvature depends on density. We argue that this distorts the AP effect
on small scales. After analyzing the dynamics of galaxy pairs in the Millennium
simulation, we find an interplay between peculiar velocities, galaxy properties
and local density that affects how pairs trace cosmological expansion. We find
that only low mass, isolated galaxy pairs trace the average expansion with a
minimum "correction" for peculiar velocities. Other pairs require larger, more
cosmology and redshift dependent peculiar velocity corrections and, in the
small-separation limit of being bound in a collapsed system, do not carry
cosmological information.Comment: 15 pages, 14 figures, 1 tabl
Age constraints on the evolution of the Quetico belt, Superior Province, Ontario
Much attention has been focused on the nature of Archean tectonic processes and the extent to which they were different from modern rigid-plate tectonics. The Archean Superior Province has linear metavolcanic and metasediment-dominated subprovinces of similar scale to cenozoic island arc-trench systems of the western Pacific, suggesting an origin by accreting arcs. Models of the evolution of metavolcanic belts in parts of the Superior Province suggest an arc setting but the tectonic environment and evolution of the intervening metasedimentary belts are poorly understood. In addition to explaining the setting giving rise to a linear sedimentary basin, models must account for subsequent shortening and high-temperature, low-pressure metamorphism. Correlation of rock units and events in adjacent metavolcanic and metasedimentary belts is a first step toward understanding large-scale crustal interactions. To this end, zircon geochronology has been applied to metavolcanic belts of the western Superior Province; new age data for the Quetico metasedimentary belt is reported, permitting correlation with the adjacent Wabigoon and Wawa metavolcanic subprovinces
From Heisenberg matrix mechanics to EBK quantization: theory and first applications
Despite the seminal connection between classical multiply-periodic motion and
Heisenberg matrix mechanics and the massive amount of work done on the
associated problem of semiclassical (EBK) quantization of bound states, we show
that there are, nevertheless, a number of previously unexploited aspects of
this relationship that bear on the quantum-classical correspondence. In
particular, we emphasize a quantum variational principle that implies the
classical variational principle for invariant tori. We also expose the more
indirect connection between commutation relations and quantization of action
variables. With the help of several standard models with one or two degrees of
freedom, we then illustrate how the methods of Heisenberg matrix mechanics
described in this paper may be used to obtain quantum solutions with a modest
increase in effort compared to semiclassical calculations. We also describe and
apply a method for obtaining leading quantum corrections to EBK results.
Finally, we suggest several new or modified applications of EBK quantization.Comment: 37 pages including 3 poscript figures, submitted to Phys. Rev.
Damped Lyman alpha systems and disk galaxies: number density, column density distribution and gas density
We present a comparison between the observed properties of damped Lyman alpha
systems (DLAs) and the predictions of simple models for the evolution of
present day disk galaxies, including both low and high surface brightness
galaxies. We focus in particular on the number density, column density
distribution and gas density of DLAs, which have now been measured in
relatively large samples of absorbers. From the comparison we estimate the
contribution of present day disk galaxies to the population of DLAs, and how it
varies with redshift. Based on the differences between the models and the
observations, we also speculate on the nature of the fraction of DLAs which
apparently do not arise in disk galaxies.Comment: 11 pages, 10 figures, accepted in MNRA
- …
