347 research outputs found
Getting a kick out of the stellar disk(s) in the galactic center
Recent observations of the Galactic center revealed a nuclear disk of young
OB stars, in addition to many similar outlying stars with higher eccentricities
and/or high inclinations relative to the disk (some of them possibly belonging
to a second disk). Binaries in such nuclear disks, if they exist in
non-negligible fractions, could have a major role in the evolution of the disks
through binary heating of this stellar system. We suggest that interactions
with/in binaries may explain some (or all) of the observed outlying young stars
in the Galactic center. Such stars could have been formed in a disk, and later
on kicked out from it through binary related interactions, similar to ejection
of high velocity runaway OB stars in young clusters throughout the galaxy.Comment: 2 pages, 2 figs. To be published in the proceedings of the IAU 246
symposium on "Dynamical evolution of dense stellar systems
Evidence for Warped Disks of Young Stars in the Galactic Center
The central parsec around the super-massive black hole in the Galactic Center
hosts more than 100 young and massive stars. Outside the central cusp (R~1")
the majority of these O and Wolf-Rayet (WR) stars reside in a main clockwise
system, plus a second, less prominent disk or streamer system at large angles
with respect to the main system. Here we present the results from new
observations of the Galactic Center with the AO-assisted near-infrared imager
NACO and the integral field spectrograph SINFONI on the ESO/VLT. These include
the detection of 27 new reliably measured WR/O stars in the central 12" and
improved measurements of 63 previously detected stars, with proper motion
uncertainties reduced by a factor of four compared to our earlier work. We
develop a detailed statistical analysis of their orbital properties and
orientations. Half of the WR/O stars are compatible with being members of a
clockwise rotating system. The rotation axis of this system shows a strong
transition as a function of the projected distance from SgrA*. The main
clockwise system either is either a strongly warped single disk with a
thickness of about 10 degrees, or consists of a series of streamers with
significant radial variation in their orbital planes. 11 out of 61 clockwise
moving stars have an angular separation of more than 30 degrees from the
clockwise system. The mean eccentricity of the clockwise system is 0.36+/-0.06.
The distribution of the counter-clockwise WR/O star is not isotropic at the 98%
confidence level. It is compatible with a coherent structure such as stellar
filaments, streams, small clusters or possibly a disk in a dissolving state.
The observed disk warp and the steep surface density distribution favor in situ
star formation in gaseous accretion disks as the origin of the young stars.Comment: ApJ in pres
The Multiple Origin of Blue Straggler Stars: Theory vs. Observations
In this chapter we review the various suggested channels for the formation
and evolution of blue straggler stars (BSSs) in different environments and
their observational predictions. These include mass transfer during binary
stellar evolution - case A/B/C and D (wind Roche-lobe overflow) mass transfer,
stellar collisions during single and binary encounters in dense stellar
cluster, and coupled dynamical and stellar evolution of triple systems. We also
explore the importance of the BSS and binary dynamics in stellar clusters. We
review the various observed properties of BSSs in different environments (halo
and bulge BSSs, BSSs in globular clusters and BSSs in old open clusters), and
compare the current observations with the theoretical predictions for BSS
formation. We try to constrain the likely progenitors and processes that play a
role in the formation of BSSs and their evolution. We find that multiple
channels of BSS formation are likely to take part in producing the observed
BSSs, and we point out the strengths and weaknesses of each the formation
channel in respect to the observational constraints. Finally we point out
directions to further explore the origin of BSS, and highlight eclipsing binary
BSSs as important observational tool.Comment: Chapter 11, in Ecology of Blue Straggler Stars, H.M.J. Boffin, G.
Carraro & G. Beccari (Eds), Astrophysics and Space Science Library, Springe
Formation of molecular hydrogen on analogues of interstellar dust grains: experiments and modelling
Molecular hydrogen has an important role in the early stages of star
formation as well as in the production of many other molecules that have been
detected in the interstellar medium. In this review we show that it is now
possible to study the formation of molecular hydrogen in simulated
astrophysical environments. Since the formation of molecular hydrogen is
believed to take place on dust grains, we show that surface science techniques
such as thermal desorption and time-of-flight can be used to measure the
recombination efficiency, the kinetics of reaction and the dynamics of
desorption. The analysis of the experimental results using rate equations gives
useful insight on the mechanisms of reaction and yields values of parameters
that are used in theoretical models of interstellar cloud chemistry.Comment: 23 pages, 7 figs. Published in the J. Phys.: Conf. Se
On rapid migration and accretion within disks around supermassive black holes
Galactic nuclei should contain a cluster of stars and compact objects in the
vicinity of the central supermassive black hole due to stellar evolution, minor
mergers and gravitational dynamical friction. By analogy with protoplanetary
migration, nuclear cluster objects (NCOs) can migrate in the accretion disks
that power active galactic nuclei by exchanging angular momentum with disk gas.
Here we show that an individual NCO undergoing runaway outward migration
comparable to Type III protoplanetary migration can generate an accretion rate
corresponding to Seyfert AGN or quasar luminosities. Multiple migrating NCOs in
an AGN disk can dominate traditional viscous disk accretion and at large disk
radii, ensemble NCO migration and accretion could provide sufficient heating to
prevent the gravitational instability from consuming disk gas in star
formation. The magnitude and energy of the X-ray soft excess observed at
~0.1-1keV in Seyfert AGN could be explained by a small population of
~10^{2}-10^{3} accreting stellar mass black holes or a few ULXs. NCO migration
and accretion in AGN disks are therefore extremely important mechanisms to add
to realistic models of AGN disks.Comment: 6 pages, 2 figures, MNRAS Letters (accepted
EC-SNe from super-AGB progenitors: theoretical models vs. observations
Using a parametric approach, we determine the configuration of super-AGB
stars at the explosion as a function of the initial mass and metallicity, in
order to verify if the EC-SN scenario involving a super-AGB star is compatible
with the observations regarding SN2008ha and SN2008S. The results show that
both the SNe can be explained in terms of EC-SNe from super-AGB progenitors
having a different configuration at the collapse. The impact of these results
on the interpretation of other sub-luminous SNe is also discussed.Comment: Accepted for publication in ApJ
Massive perturbers and the efficient merger of binary massive black holes
We show that dynamical relaxation in the aftermath of a galactic merger and
the ensuing formation and decay of a binary massive black hole (MBH), are
dominated by massive perturbers (MPs) such as giant molecular clouds or
clusters. MPs accelerate relaxation by orders of magnitude relative to 2-body
stellar relaxation alone, and efficiently scatter stars into the binary MBH's
orbit. The 3-body star-binary MBH interactions shrink the binary MBH to the
point where energy losses from the emission of gravitational waves (GW) lead to
rapid coalescence. We model this process based on observed and simulated MP
distributions and take into account the decreased efficiency of the star-binary
MBH interaction due to acceleration in the galactic potential. We show that
mergers of gas-rich galactic nuclei lead to binary MBH coalescence well within
the Hubble time. Moreover, lower-mass binary MBHs (<10^8 Msun) require only a
few percent of the typical gas mass in a post-merger nucleus to coalesce in a
Hubble time. The fate of a binary MBH in a gas poor galactic merger is less
certain, although massive stellar structures (e.g. clusters, stellar rings)
could likewise lead to efficient coalescence. These coalescence events are
observable by their strong GW emission. MPs thus increase the cosmic rate of
such GW events, lead to a higher mass deficit in the merged galactic core and
suppress the formation of triple MBH systems and the resulting ejection of MBHs
into intergalactic space.Comment: 14 pages, 4 figures, 3 tables. More detailed explanations and changes
in structure. Section on hypervelocity stars moved to another paper (in
preparation). Results and conclusions unchanged. Accepted to Ap
Simulating quantum statistics with entangled photons: a continuous transition from bosons to fermions
In contrast to classical physics, quantum mechanics divides particles into
two classes-bosons and fermions-whose exchange statistics dictate the dynamics
of systems at a fundamental level. In two dimensions quasi-particles known as
'anyons' exhibit fractional exchange statistics intermediate between these two
classes. The ability to simulate and observe behaviour associated to
fundamentally different quantum particles is important for simulating complex
quantum systems. Here we use the symmetry and quantum correlations of entangled
photons subjected to multiple copies of a quantum process to directly simulate
quantum interference of fermions, bosons and a continuum of fractional
behaviour exhibited by anyons. We observe an average similarity of 93.6\pm0.2%
between an ideal model and experimental observation. The approach generalises
to an arbitrary number of particles and is independent of the statistics of the
particles used, indicating application with other quantum systems and large
scale application.Comment: 10 pages, 5 figure
Milky Way potentials in CDM and MOND. Is the Large Magellanic Cloud on a bound orbit?
We compute the Milky Way potential in different cold dark matter (CDM) based
models, and compare these with the modified Newtonian dynamics (MOND)
framework. We calculate the axis ratio of the potential in various models, and
find that isopotentials are less spherical in MOND than in CDM potentials. As
an application of these models, we predict the escape velocity as a function of
the position in the Galaxy. This could be useful in comparing with future data
from planned or already-underway kinematic surveys (RAVE, SDSS, SEGUE, SIM,
GAIA or the hypervelocity stars survey). In addition, the predicted escape
velocity is compared with the recently measured high proper motion velocity of
the Large Magellanic Cloud (LMC). To bind the LMC to the Galaxy in a MOND
model, while still being compatible with the RAVE-measured local escape speed
at the Sun's position, we show that an external field modulus of less than
is needed.Comment: Accepted for publication in MNRAS, 13 pages, 7 figures, 3 table
- …
