491 research outputs found
High-throughput screening of metal-porphyrin-like graphenes for selective capture of carbon dioxide
Nanostructured materials, such as zeolites and metal-organic frameworks, have been considered to capture CO2. However, their application has been limited largely because they exhibit poor selectivity for flue gases and low capture capacity under low pressures. We perform a high-throughput screening for selective CO2 capture from flue gases by using first principles thermodynamics. We find that elements with empty d orbitals selectively attract CO2 from gaseous mixtures under low CO2 pressures (similar to 10(-3) bar) at 300 K and release it at similar to 450 K. CO2 binding to elements involves hybridization of the metal d orbitals with the CO2 pi orbitals and CO2-transition metal complexes were observed in experiments. This result allows us to perform high-throughput screening to discover novel promising CO2 capture materials with empty d orbitals (e.g., Sc- or V-porphyrin-like graphene) and predict their capture performance under various conditions. Moreover, these findings provide physical insights into selective CO2 capture and open a new path to explore CO2 capture materialsopen
Cooperative Binding
Molecular binding is an interaction between molecules that results in a stable association between those molecules. Cooperative binding occurs if the number of binding sites of a macromolecule that are occupied by a specific type of ligand is a nonlinear function of this ligand’s concentration. This can be due, for instance, to an affinity for the ligand that depends on the amount of ligand bound. Cooperativity can be positive (supralinear) or negative (infralinear). Cooperative binding is most often observed in proteins, but nucleic acids can also exhibit cooperative binding, for instance of transcription factors. Cooperative binding has been shown to be the mechanism underlying a large range of biochemical and physiological processes
Structural biology and phylogenetic estimation
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62633/1/388527a0.pd
Polyglutamine Induced Misfolding of Huntingtin Exon1 is Modulated by the Flanking Sequences
Polyglutamine (polyQ) expansion in exon1 (XN1) of the huntingtin protein is linked to Huntington's disease. When the number of glutamines exceeds a threshold of approximately 36–40 repeats, XN1 can readily form amyloid aggregates similar to those associated with disease. Many experiments suggest that misfolding of monomeric XN1 plays an important role in the length-dependent aggregation. Elucidating the misfolding of a XN1 monomer can help determine the molecular mechanism of XN1 aggregation and potentially help develop strategies to inhibit XN1 aggregation. The flanking sequences surrounding the polyQ region can play a critical role in determining the structural rearrangement and aggregation mechanism of XN1. Few experiments have studied XN1 in its entirety, with all flanking regions. To obtain structural insights into the misfolding of XN1 toward amyloid aggregation, we perform molecular dynamics simulations on monomeric XN1 with full flanking regions, a variant missing the polyproline regions, which are hypothesized to prevent aggregation, and an isolated polyQ peptide (Qn). For each of these three constructs, we study glutamine repeat lengths of 23, 36, 40 and 47. We find that polyQ peptides have a positive correlation between their probability to form a β-rich misfolded state and their expansion length. We also find that the flanking regions of XN1 affect its probability to^x_page_count=28 form a β-rich state compared to the isolated polyQ. Particularly, the polyproline regions form polyproline type II helices and decrease the probability of the polyQ region to form a β-rich state. Additionally, by lengthening polyQ, the first N-terminal 17 residues are more likely to adopt a β-sheet conformation rather than an α-helix conformation. Therefore, our molecular dynamics study provides a structural insight of XN1 misfolding and elucidates the possible role of the flanking sequences in XN1 aggregation
Spontaneous Quaternary and Tertiary T-R Transitions of Human Hemoglobin in Molecular Dynamics Simulation
We present molecular dynamics simulations of unliganded human hemoglobin (Hb) A under physiological conditions, starting from the R, R2, and T state. The simulations were carried out with protonated and deprotonated HC3 histidines His(β)146, and they sum up to a total length of 5.6µs. We observe spontaneous and reproducible T→R quaternary transitions of the Hb tetramer and tertiary transitions of the α and β subunits, as detected from principal component projections, from an RMSD measure, and from rigid body rotation analysis. The simulations reveal a marked asymmetry between the α and β subunits. Using the mutual information as correlation measure, we find that the β subunits are substantially more strongly linked to the quaternary transition than the α subunits. In addition, the tertiary populations of the α and β subunits differ substantially, with the β subunits showing a tendency towards R, and the α subunits showing a tendency towards T. Based on the simulation results, we present a transition pathway for coupled quaternary and tertiary transitions between the R and T conformations of Hb
Screening for Toxic Amyloid in Yeast Exemplifies the Role of Alternative Pathway Responsible for Cytotoxicity
The relationship between amyloid and toxic species is a central problem since the discovery of amyloid structures in different diseases. Despite intensive efforts in the field, the deleterious species remains unknown at the molecular level. This may reflect the lack of any structure-toxicity study based on a genetic approach. Here we show that a structure-toxicity study without any biochemical prerequisite can be successfully achieved in yeast. A PCR mutagenesis of the amyloid domain of HET-s leads to the identification of a mutant that might impair cellular viability. Cellular and biochemical analyses demonstrate that this toxic mutant forms GFP-amyloid aggregates that differ from the wild-type aggregates in their shape, size and molecular organization. The chaperone Hsp104 that helps to disassemble protein aggregates is strictly required for the cellular toxicity. Our structure-toxicity study suggests that the smallest aggregates are the most toxic, and opens a new way to analyze the relationship between structure and toxicity of amyloid species
Comparative Population Genetics of the Immunity Gene, Relish: Is Adaptive Evolution Idiosyncratic?
The frequency of adaptive evolution acting on common loci in distant lineages remains an outstanding question in evolutionary biology. We asked whether the immunity factor, Relish, a gene with a history of directional selection in Drosophila simulans, shows evidence of a similar selective history in other Drosophila species. We found only weak evidence of recurrent adaptive protein evolution at the Relish locus in three sister species pairs, suggesting that this key component of the insect immune system has an idiosyncratic evolutionary history in Drosophila
Deciphering the Structure, Growth and Assembly of Amyloid-Like Fibrils Using High-Speed Atomic Force Microscopy
Formation of fibrillar structures of proteins that deposit into aggregates has been suggested to play a key role in various neurodegenerative diseases. However mechanisms and dynamics of fibrillization remains to be elucidated. We have previously established that lithostathine, a protein overexpressed in the pre-clinical stages of Alzheimer's disease and present in the pathognomonic lesions associated with this disease, form fibrillar aggregates after its N-terminal truncation. In this paper we visualized, using high-speed atomic force microscopy (HS-AFM), growth and assembly of lithostathine protofibrils under physiological conditions with a time resolution of one image/s. Real-time imaging highlighted a very high velocity of elongation. Formation of fibrils via protofibril lateral association and stacking was also monitored revealing a zipper-like mechanism of association. We also demonstrate that, like other amyloid ß peptides, two lithostathine protofibrils can associate to form helical fibrils. Another striking finding is the propensity of the end of a growing protofibril or fibril to associate with the edge of a second fibril, forming false branching point. Taken together this study provides new clues about fibrillization mechanism of amyloid proteins
Controlling spins in adsorbed molecules by a chemical switch
The development of chemical systems with switchable molecular spins could lead to the architecture of materials with controllable magnetic or spintronic properties. Here, we present conclusive evidence that the spin of an organometallic molecule coupled to a ferromagnetic substrate can be switched between magnetic off and on states by a chemical stimulus. This is achieved by nitric oxide (NO) functioning as an axial ligand of cobalt(II)tetraphenylporphyrin (CoTPP) ferromagnetically coupled to nickel thin-film (Ni(001)). On NO addition, the coordination sphere of Co2+ is modified and a NO–CoTPP nitrosyl complex is formed, which corresponds to an off state of the Co spin. Thermal dissociation of NO from the nitrosyl complex restores the on state of the Co spin. The NO-induced reversible off–on switching of surface-adsorbed molecular spins observed here is attributed to a spin trans effect
Gated Diffusion-controlled Reactions
The binding and active sites of proteins are often dynamically occluded by motion of the nearby polypeptide. A variety of theoretical and computational methods have been developed to predict rates of ligand binding and reactivity in such cases. Two general approaches exist, "protein centric" approaches that explicitly treat only the protein target, and more detailed dynamical simulation approaches in which target and ligand are both treated explicitly. This mini-review describes recent work in this area and some of the biological implications
- …
