424 research outputs found

    A double scale methodology to investigate flow in karst fractured media via numerical analysis. The Cassino plain case study (Central Apennine, Italy)

    Get PDF
    A methodology to evaluate the hydraulic conductivity of the karstmedia at a regional scale has been proposed, combining pumping tests and the hydrostructural approach, evaluating the hydraulic conductivity of fractured rocks at the block scale. Obtaining hydraulic conductivity values, calibrated at a regional scale, a numerical flow model of the Cassino area has been developed, to validate the methodology and investigate the ambiguity, related to a nonunique hydrogeological conceptual model. The Cassino plain is an intermontane basin with outstanding groundwater resources.The plain is surrounded by karst hydrostructures that feed the Gari Springs and Peccia Springs. Since the 1970s, the study area was the object of detailed investigations with an exceptional density of water-wells and piezometers, representing one of the most important karst study-sites in central-southern Italy. Application of the proposed methodology investigates the hydraulic conductivity tensor at local and regional scales, reawakening geological and hydrogeological issues of a crucial area and tackling the limits of the continuum modelling in karst medi

    Exploring copepod distribution patterns at three nested spatial scales in a spring system. Habitat partitioning and potential for hydrological bioindication

    Get PDF
    In groundwater-fed springs, habitat characteristics are primarily determined by a complex combination of geomorphic features and physico-chemical parameters, while species assemblages are even more intricate. Springs host species either inhabiting the spring mouth, or colonizing spring habitats from the surface or from the aquifers which feed the springs. Groundwater species living in springs have been claimed as good candidates for identifying dual aquifer flowpaths or changes in groundwater pathways before reaching the spring outlets. However, the reliability of spring species as hydrological biotracers has not been widely investigated so far. Our study was aimed at analysing a large karstic spring system at three nested spatial scales in order: i) to assess, at whole spring system scale, the presence of a groundwater divide separating two aquifers feeding two spring units within a single spring system, by combining isotope analyses, physico-chemistry, and copepod distribution patterns; ii) to test, at vertical spring system scale, the effectiveness of copepods in discriminating surface and subsurface habitat patches within the complex mosaic spring environment; iii) to explore, at local spring unit level, the relative role of hydrochemistry and sediment texture as describers of copepod distribution among microhabitats. The results obtained demonstrated the presence of a hierarchical spatial structure, interestingly reflected in significant differences in assemblage compositions. Copepod assemblages differed between the two contiguous spring units, which were clearly characterized by their hydrochemistry and by significant differences in the groundwater flowpaths and recharge areas, as derived by the isotope analyses. The biological results suggested that stygobiotic species seem to be related to the origin of groundwater, suggesting their potential role as hydrological biotracers. At vertical scale, assemblage composition in surface and subsurface habitats was significantly different, both between spring units and among microhabitats, supporting strong habitat preferences of copepod species. At the smaller local scale, the response to habitat patchiness of subsurface copepod assemblages resulted in distribution patterns primarily defined by sediment texture, while the sensitivity to differences in hydrochemistry was negligible

    Early 21st century snow cover state over the western river basins of the Indus River system

    Get PDF
    In this paper we assess the snow cover and its dynamics for the western river basins of the Indus River system (IRS) and their sub-basins located in Afghanistan, China, India and Pakistan for the period 2001–2012. First, we validate the Moderate Resolution Imaging Spectroradiometer (MODIS) daily snow products from Terra (MOD10A1) and Aqua (MYD10A1) against the Landsat Thematic Mapper/Enhanced Thematic Mapper plus (TM/ETM+) data set, and then improve them for clouds by applying a validated non-spectral cloud removal technique. The improved snow product has been analysed on a seasonal and annual basis against different topographic parameters (aspect, elevation and slope). Our results show a decreasing tendency for the annual average snow cover for the westerlies-influenced basins (upper Indus basin (UIB), Astore, Hunza, Shigar and Shyok) and an increasing tendency for the monsoon-influenced basins (Jhelum, Kabul, Swat and Gilgit). Seasonal average snow cover decreases during winter and autumn, and increases during spring and summer, which is consistent with the observed cooling and warming trends during the respective seasons. Sub-basins at relatively higher latitudes/altitudes show higher variability than basins at lower latitudes/middle altitudes. Northeastern and northwestern aspects feature greater snow cover. The mean end-of-summer regional snow line altitude (SLA) zones range from 3000 to 5000 m a.s.l. for all basins. Our analysis provides an indication of a descending end-of-summer regional SLA zone for most of the studied basins, which is significant for the Shyok and Kabul basins, thus indicating a change in their water resources. Such results are consistent with the observed hydro-climatic data, recently collected local perceptions and glacier mass balances for the investigated period within the UIB. Moreover, our analysis shows a significant correlation between winter season snow cover and the North Atlantic Oscillation (NAO) index of the previous autumn. Similarly, the inter-annual variability of spring season snow cover and spring season precipitation explains well the inter-annual variability of the summer season discharge from most of the basins. These findings indicate some potential for the seasonal stream flow forecast in the region, suggesting snow cover as a possible predictor

    The KINDRA project. Sharing and evaluating groundwater research and knowledge in Europe

    Get PDF
    Groundwater knowledge and research in the European Union is often scattered and non-standardised, because of different subjects involved and different approaches from Member States. The Horizon2020 project KINDRA has conducted an EU-wide assessment of existing groundwater-related practical and scientific knowledge based on a new Hydrogeological Research Classification System, identifying more than 280 keywords related to three main categories (namely Operational Actions, Research topics and Societal Challenges) to be intersected in a 3D-diagram approach. The classification is supported by a web-service, the European Inventory of Groundwater Research, which acts not only as knowledge repository but also as a tool to help identify relevant researchm topics, existing research trends and critical research challenges. The records have been uploaded during the project by 20 national experts from National Associations of Geologists, under the umbrella of the European Federation of Geologists. The total number of metadata included in the inventory at the end of the project are about 2300, and the analysis of the results is considered useful for producing synergies, implementing policies and optimising water management in Europe. By the use of additional indicators, the database content has been analysed by occurrence of keywords, type of document, level of innovation. Using the three-axes classification, more easily understandable by 2D diagrams as bubble plots, occurrence and relationship of different topics (main categories) in groundwater research have been highlighted. This article summarizes the activities realized in relation to the common classification system and to the metadata included in the EIGR, showing the distribution of thecollected information in different categories and attributes identified by the classification

    The KINDRA project – towards Open Science in Hydrogeology for higher impact

    Get PDF
    Groundwater knowledge and research in the European Union is often scattered and non-standardised. Therefore, KINDRA is conducting an EU-wide assessment of existing groundwater-related practical and scientific knowledge based on a new Hydrogeological Research Classification System (HRC-SYS). The classification is supported by a web service, the European Inventory of Groundwater Research (EIGR), which acts not only as a knowledge repository but also as a tool to help identify relevant research topics, existing research trends and critical research challenges. These results will be useful for producing synergies, implementing policies and optimising water management in Europe. This article presents the work of the project during the first two years in relation to a common classification system and an activity for data collection and training delivered by the EFG’s National Associations in 20 European countries

    The role of hydrogeological monitoring in a multidisciplinary context for the preservation of the critical zone in the natural reserve of Castelporziano Estate

    Get PDF
    Critical Zone (CZ) science has developed in recent years, involving different disciplines that vary depending on the specific research focus. This multidisciplinary approach highlights the relevance of the Underground component of the Critical Zone (UCZ) in regulating the water cycle, which can influence the complex equilibrium of the whole CZ. In this study, we analyze evolution during the time of different parameters, characterizing the saturated and unsaturated parts of the UCZ of the Castelporziano Estate, a natural reserve located in a coastal area close to Rome. The purposes of these activities are to monitor the potential depletion of groundwater resources and understand the recharge mechanism processes characterizing the aquifer in the framework of occurring climate changes, net of anthropogenic pressure. The long-term analyses of water table variations carried out over the last 25 years, allowed us to preliminarily identify four different ranges of the slope coefficient of the water table, characterizing different areas of the Estate. Specifically, the Northern, Central, and Coastal areas have shown a general depletion trend in piezometric levels, while in the Eastern area, a positive trend has been recognized. Additional long-term analysis of piezometric level variations allowed us to confirm the presence of the four recharge areas and compare annual recharge and water table levels to assess the relationship between the saturated UCZ and meteoric recharge in the identified areas. To evaluate the role of the unsaturated UCZ in recharge mechanisms, the water content in the first meter of soil has also been analyzed, showing different responses of outcropping sediments in capturing rainfall during different periods of the year and under different rainfall input conditions, highlighting the pivotal role of rainfall for the Castelporziano UCZ, both for deep recharge of the water table and for feeding the forest roots. Stable isotopes confirm that Castelporziano UCZ feeding is strongly dependent on local meteoric recharge, also highlighting that evaporation processes are active in a limited way. The obtained results assess that the monitoring of UCZ has a crucial role in the correct preservation of more complex environmental systems, which include groundwater resources and the coastal Mediterranean forest

    Hydrogeological insights and modelling for sustainable use of a stressed carbonate aquifer in the Mediterranean area. From passive withdrawals to active management

    Get PDF
    Study area: Venafro Mts., southern-central Italy, Mediterranean basin. Study focus: Via a collection of geological and hydrogeological data, a flow conceptual model of a carbonate aquifer has been coupled with a numerical model via MODFLOW code and Unsaturated Zone Flow (UZF) package in steady state and transient conditions. Simulation is further implemented with different management scenarios, for facing possible emergencies due to recharge decrease, also simulating a drastic water abstraction cut-off. New hydrological insights for the region: Carbonate fractured aquifers are a strategic water resource in the whole Mediterranean area, supplying major metropolitan areas. Despite these huge extensions, such groundwater systems are threatened by increasing drought occurrence and significant human water abstraction. A characterization of a carbonate fractured aquifer (370 km2) located in central-southern Italy has been performed. Venafro Mts. Aquifer (VMA) hosts a strategic resource for the Western Campania Waterworks (WCW) that supplies the populous metropolitan area of Naples, with 3.8 million inhabitants. VMA shows a slow response, with recovery time estimated at the decennial scale, testifying its limited resilience to natural and human pressures. A shift is proposed from passive management to a more comprehensive concept of smart-water monitoring, applied not only to waterworks and pipelines, but also to groundwater resources in the environment

    Implementing Mindfulness in General Life and Organizations. Validation of the Time Flow Mindfulness Questionnaire for Effective Health Management

    Get PDF
    The primary purpose of the current research was to examine the psychometric properties of the Time Flow Mindfulness Questionnaire (TFMQ), a new self-report scale designed to measure cognitive, emotional, bodily, context-related, and action-related distracting inputs experienced by the mind during three different time windows of mindfulness practice (preliminary moments, during-the-practice, after-the-practice). The 42-item scale assesses the following second-order and first-order factors: Practice (preliminary, during), Benefits (short-term, long-term) and Benefits at work. Three studies were conducted. The first study assessed the factor structure and internal consistency on a sample of 141 mindfulness practitioners. Using a two-wave lagged design on a different sample of 46 trainees attending MBSR courses, the second study examined concurrent validity by performing correlations between the TFMQ and Five Facets Mindfulness Questionnaire (FFMQ). The third study (same sample as study 1) examined criterion validity by testing a structural equation model wherein mindfulness practice predicts job burnout, both directly and indirectly through mindfulness benefits at work. All studies relied on anonymous surveys. Our findings suggest that the TFMQ: a) has a factor structure consistent with the hypothesized conceptual dimensions; b) has good concurrent validity as demonstrated by significant correlations with the FFMQ dimensions; and c) consists of mindfulness dimensions that predict job burnout in organizations (i.e., criterion validity). The TFMQ is a valid and reliable mindfulness measure that may help a) practitioners gain awareness of different types of inputs that potentially distract the mind and mindfulness beneficial consequences, and b) organizations implement mindfulness in work-settings

    Flexible photovoltaic systems for renewable energy integration in Lazio region, Italy

    Get PDF
    Italy is expanding its renewable electricity generation to meet European energy and environmental targets. The aim of this work is to study and implement a strategy to promote a high self-production of non-programmable renewable energies (solar and wind) in the electricity mix of an Italian region (Lazio), to reach the target of 100 % Renewable Energy Source (RES) by 2050 set in the Regional Energy Plan (PER). This can be achieved through the innovative concept of "flexible PV" that has the potential to make solar power generation 24/365. The results showed that by oversizing the photovoltaic in relation to the annual electricity demand and using optimized batteries, 90% of the electricity demand of the Lazio region can be satisfied by photovoltaic and the remaining 10 % by hydro and wind power. To reach this target, Lazio would need to install 34.73 GWp of photovoltaic capacity and 42.34 GWh of batteries at an optimum cost of 92.21 /MWh (costs estimated at 2050). In addition, the integration of wind energy into the grid was studied to reduce the photovoltaic capacity
    corecore