312 research outputs found
Nuclear effects in Deep Inelastic Scattering of polarized electrons off polarized 3He and the neutron spin structure functions
It is shown that the nuclear effects playing a relevant role in Deep
Inelastic Scattering of polarized electrons by polarized He are mainly
those arising from the effective proton and neutron polarizations generated by
the and waves in He. A simple and reliable equation relating the
neutron, , and He, , spin structure functions is proposed. It
is shown that the measurement of the first moment of the He structure
function can provide a significant check of the Bjorken Sum Rule.Comment: 11 pages (revTeX), DFUPG 75/93; 5 (postscript) figures available upon
request from the author
Transition between nuclear and quark-gluon descriptions of hadrons and light nuclei
We provide a perspective on studies aimed at observing the transition between
hadronic and quark-gluonic descriptions of reactions involving light nuclei. We
begin by summarizing the results for relatively simple reactions such as the
pion form factor and the neutral pion transition form factor as well as that
for the nucleon and end with exclusive photoreactions in our simplest nuclei. A
particular focus will be on reactions involving the deuteron. It is noted that
a firm understanding of these issues is essential for unraveling important
structure information from processes such as deeply virtual Compton scattering
as well as deeply virtual meson production. The connection to exotic phenomena
such as color transparency will be discussed. A number of outstanding
challenges will require new experiments at modern facilities on the horizon as
well as further theoretical developments.Comment: 37 pages, 17 figures, submitted to Reports on Progress in Physic
JLab Measurement of the He Charge Form Factor at Large Momentum Transfers
The charge form factor of ^4He has been extracted in the range 29 fm
fm from elastic electron scattering, detecting He
nuclei and electrons in coincidence with the High Resolution Spectrometers of
the Hall A Facility of Jefferson Lab. The results are in qualitative agreement
with realistic meson-nucleon theoretical calculations. The data have uncovered
a second diffraction minimum, which was predicted in the range of this
experiment, and rule out conclusively long-standing predictions of dimensional
scaling of high-energy amplitudes using quark counting.Comment: 4 pages, 2 figure
Measurements of the -Dependence of the Proton and Neutron Spin Structure Functions g1p and g1n
The structure functions g1p and g1n have been measured over the range 0.014 <
x < 0.9 and 1 < Q2 < 40 GeV2 using deep-inelastic scattering of 48 GeV
longitudinally polarized electrons from polarized protons and deuterons. We
find that the Q2 dependence of g1p (g1n) at fixed x is very similar to that of
the spin-averaged structure function F1p (F1n). From a NLO QCD fit to all
available data we find at
Q2=5 GeV2, in agreement with the Bjorken sum rule prediction of 0.182 \pm
0.005.Comment: 17 pages, 3 figures. Submitted to Physics Letters
Precision Determination of the Neutron Spin Structure Function g1n
We report on a precision measurement of the neutron spin structure function
using deep inelastic scattering of polarized electrons by polarized
^3He. For the kinematic range 0.014<x<0.7 and 1 (GeV/c)^2< Q^2< 17 (GeV/c)^2,
we obtain at an average . We find relatively large negative
values for at low . The results call into question the usual Regge
theory method for extrapolating to x=0 to find the full neutron integral
, needed for testing quark-parton model and QCD sum rules.Comment: 5 pages, 3 figures To be published in Phys. Rev. Let
Measurement of the Generalized Forward Spin Polarizabilities of the Neutron
The generalized forward spin polarizabilities and of
the neutron have been extracted for the first time in a range from 0.1 to
0.9 GeV. Since is sensitive to nucleon resonances and
is insensitive to the resonance, it is expected that the
pair of forward spin polarizabilities should provide benchmark tests of the
current understanding of the chiral dynamics of QCD. The new results on
show significant disagreement with Chiral Perturbation Theory
calculations, while the data for at low are in good agreement
with a next-to-lead order Relativistic Baryon Chiral Perturbation theory
calculation. The data show good agreement with the phenomenological MAID model.Comment: 5 pages, 2 figures, corrected typo in author name, published in PR
New Measurement of Parity Violation in Elastic Electron-Proton Scattering and Implications for Strange Form Factors
We have measured the parity-violating electroweak asymmetry in the elastic
scattering of polarized electrons from the proton. The result is A = -15.05 +-
0.98(stat) +- 0.56(syst) ppm at the kinematic point theta_lab = 12.3 degrees
and Q^2 = 0.477 (GeV/c)^2. The measurement implies that the value for the
strange form factor (G_E^s + 0.392 G_M^s) = 0.025 +- 0.020 +- 0.014, where the
first error is experimental and the second arises from the uncertainties in
electromagnetic form factors. This measurement is the first fixed-target parity
violation experiment that used either a `strained' GaAs photocathode to produce
highly polarized electrons or a Compton polarimeter to continuously monitor the
electron beam polarization.Comment: 8 pages, 4 figures, Tex, elsart.cls; revised version as accepted for
Phys. Lett.
Q^2 Evolution of the Neutron Spin Structure Moments using a He-3 Target
We have measured the spin structure functions and of He in a
double-spin experiment by inclusively scattering polarized electrons at
energies ranging from 0.862 to 5.07 GeV off a polarized He target at a
15.5 scattering angle. Excitation energies covered the resonance and
the onset of the deep inelastic regions. We have determined for the first time
the evolution of ,
and for the neutron in the range 0.1 GeV 0.9 GeV with good precision. displays a smooth
variation from high to low . The Burkhardt-Cottingham sum rule holds
within uncertainties and is non-zero over the measured range.Comment: 5 pages, 2 figures, submitted to Phys. Rev. Lett.. Updated Hermes
data in Fig. 2 (top panel) and their corresponding reference. Updated the low
x extrapolation error Fig. 2 (middle panel). Corrected references to ChiPT
calculation
Trouble in Asymptopia---the Hulthen Model on the Light Front
We use light-front dynamics to calculate the electromagnetic form-factor for
the Hulthen model of the deuteron. For small momentum transfer Q^2 < 5 GeV^2
the relativistic effects are quite small. For Q^2 = 11 GeV^2 there is about a
13% discrepancy between the relativistic and non-relativistic approaches. For
asymptotically large momentum transfer, however, the light-front form factor,
log Q^2 /Q^4, markedly differs from the non-relativistic version, 1/Q^4. This
behavior is also present for any wave function, such as those obtained from
realistic potential models, which can be represented as a sum of Yukawa
functions. Furthermore, the asymptotic behavior is in disagreement with the
Drell-Yan-West relation. We investigate precisely how to determine the
asymptotic behavior and confront the problem underlying troublesome form
factors on the light front.Comment: 20 pages, 8 figures Accepted by Phys. Rev
Large Momentum Transfer Measurements of the Deuteron Elastic Structure Function A(Q^2) at Jefferson Laboratory
The deuteron elastic structure function A(Q^2) has been extracted in the Q^2
range 0.7 to 6.0 (GeV/c)^2 from cross section measurements of elastic
electron-deuteron scattering in coincidence using the Hall A Facility of
Jefferson Laboratory. The data are compared to theoretical models based on the
impulse approximation with inclusion of meson-exchange currents, and to
predictions of quark dimensional scaling and perturbative quantum
chromodynamicsComment: Submitted to Physical Review Letter
- …
