3,776 research outputs found
The Gorenstein defect category
We consider the homotopy category of complexes of projective modules over a
Noetherian ring. Truncation at degree zero induces a fully faithful triangle
functor from the totally acyclic complexes to the stable derived category. We
show that if the ring is either Artin or commutative Noetherian local, then the
functor is dense if and only if the ring is Gorenstein. Motivated by this, we
define the Gorenstein defect category of the ring, a category which in some
sense measures how far the ring is from being Gorenstein.Comment: 11 pages, updated versio
Circuit theory of crossed Andreev reflection
We consider transport in a three terminal device attached to one
superconducting and two normal metal terminals, using the circuit theory of
mesoscopic superconductivity. We compute the nonlocal conductance of the
current out of the first normal metal terminal in response to a bias voltage
between the second normal metal terminal and the superconducting terminal. The
nonlocal conductance is given by competing contributions from crossed Andreev
reflection and electron cotunneling, and we determine the contribution from
each process. The nonlocal conductance vanishes when there is no resistance
between the superconducting terminal and the device, in agreement with previous
theoretical work. Electron cotunneling dominates when there is a finite
resistance between the device and the superconducting reservoir. Decoherence is
taken into account, and the characteristic timescale is the particle dwell
time. This gives rise to an effective Thouless energy. Both the conductance due
to crossed Andreev reflection and electron cotunneling depend strongly on the
Thouless energy. We suggest to experimentally determine independently the
conductance due to crossed Andreev reflection and electron cotunneling in
measurement of both energy and charge flow into one normal metal terminal in
response to a bias voltage between the other normal metal terminal and the
superconductor.Comment: v2: Published version with minor changes, 12 pages and 9 figure
Higher order corrections to the Newtonian potential in the Randall-Sundrum model
The general formalism for calculating the Newtonian potential in fine-tuned
or critical Randall-Sundrum braneworlds is outlined. It is based on using the
full tensor structure of the graviton propagator. This approach avoids the
brane-bending effect arising from calculating the potential for a point source.
For a single brane, this gives a clear understanding of the disputed overall
factor 4/3 entering the correction. The result can be written on a compact form
which is evaluated to high accuracy for both short and large distances.Comment: 12 pages, LaTeX2e with RevTeX4, 3 postscript figures; Minor
corrections, references update
- …
