170 research outputs found
Lumbar disc degeneration is linked to a carbohydrate sulfotransferase 3 variant.
Lumbar disc degeneration (LDD) is associated with both genetic and environmental factors and affects many people worldwide. A hallmark of LDD is loss of proteoglycan and water content in the nucleus pulposus of intervertebral discs. While some genetic determinants have been reported, the etiology of LDD is largely unknown. Here we report the findings from linkage and association studies on a total of 32,642 subjects consisting of 4,043 LDD cases and 28,599 control subjects. We identified carbohydrate sulfotransferase 3 (CHST3), an enzyme that catalyzes proteoglycan sulfation, as a susceptibility gene for LDD. The strongest genome-wide linkage peak encompassed CHST3 from a Southern Chinese family-based data set, while a genome-wide association was observed at rs4148941 in the gene in a meta-analysis using multiethnic population cohorts. rs4148941 lies within a potential microRNA-513a-5p (miR-513a-5p) binding site. Interaction between miR-513a-5p and mRNA transcribed from the susceptibility allele (A allele) of rs4148941 was enhanced in vitro compared with transcripts from other alleles. Additionally, expression of CHST3 mRNA was significantly reduced in the intervertebral disc cells of human subjects carrying the A allele of rs4148941. Together, our data provide new insights into the etiology of LDD, implicating an interplay between genetic risk factors and miRNA.published_or_final_versio
Population genomics of cardiometabolic traits: design of the University College London-London School of Hygiene and Tropical Medicine-Edinburgh-Bristol (UCLEB) Consortium.
Substantial advances have been made in identifying common genetic variants influencing cardiometabolic traits and disease outcomes through genome wide association studies. Nevertheless, gaps in knowledge remain and new questions have arisen regarding the population relevance, mechanisms, and applications for healthcare. Using a new high-resolution custom single nucleotide polymorphism (SNP) array (Metabochip) incorporating dense coverage of genomic regions linked to cardiometabolic disease, the University College-London School-Edinburgh-Bristol (UCLEB) consortium of highly-phenotyped population-based prospective studies, aims to: (1) fine map functionally relevant SNPs; (2) precisely estimate individual absolute and population attributable risks based on individual SNPs and their combination; (3) investigate mechanisms leading to altered risk factor profiles and CVD events; and (4) use Mendelian randomisation to undertake studies of the causal role in CVD of a range of cardiovascular biomarkers to inform public health policy and help develop new preventative therapies
Comparing Within- and Between-Family Polygenic Score Prediction
Polygenic scores are a popular tool for prediction of complex traits. However, prediction estimates in samples of unrelated participants can include effects of population stratification, assortative mating, and environmentally mediated parental genetic effects, a form of genotype-environment correlation (rGE). Comparing genome-wide polygenic score (GPS) predictions in unrelated individuals with predictions between siblings in a within-family design is a powerful approach to identify these different sources of prediction. Here, we compared within- to between-family GPS predictions of eight outcomes (anthropometric, cognitive, personality, and health) for eight corresponding GPSs. The outcomes were assessed in up to 2,366 dizygotic (DZ) twin pairs from the Twins Early Development Study from age 12 to age 21. To account for family clustering, we used mixed-effects modeling, simultaneously estimating within- and between-family effects for target- and cross-trait GPS prediction of the outcomes. There were three main findings: (1) DZ twin GPS differences predicted DZ differences in height, BMI, intelligence, educational achievement, and ADHD symptoms; (2) target and cross-trait analyses indicated that GPS prediction estimates for cognitive traits (intelligence and educational achievement) were on average 60% greater between families than within families, but this was not the case for non-cognitive traits; and (3) much of this within- and between-family difference for cognitive traits disappeared after controlling for family socio-economic status (SES), suggesting that SES is a major source of between-family prediction through rGE mechanisms. These results provide insights into the patterns by which rGE contributes to GPS prediction, while ruling out confounding due to population stratification and assortative mating
Comparing Within- and Between-Family Polygenic Score Prediction
Polygenic scores are a popular tool for prediction of complex traits. However, prediction estimates in samples of unrelated participants can include effects of population stratification, assortative mating, and environmentally mediated parental genetic effects, a form of genotype-environment correlation (rGE). Comparing genome-wide polygenic score (GPS) predictions in unrelated individuals with predictions between siblings in a within-family design is a powerful approach to identify these different sources of prediction. Here, we compared within- to between-family GPS predictions of eight outcomes (anthropometric, cognitive, personality, and health) for eight corresponding GPSs. The outcomes were assessed in up to 2,366 dizygotic (DZ) twin pairs from the Twins Early Development Study from age 12 to age 21. To account for family clustering, we used mixed-effects modeling, simultaneously estimating within- and between-family effects for target- and cross-trait GPS prediction of the outcomes. There were three main findings: (1) DZ twin GPS differences predicted DZ differences in height, BMI, intelligence, educational achievement, and ADHD symptoms; (2) target and cross-trait analyses indicated that GPS prediction estimates for cognitive traits (intelligence and educational achievement) were on average 60% greater between families than within families, but this was not the case for non-cognitive traits; and (3) much of this within- and between-family difference for cognitive traits disappeared after controlling for family socio-economic status (SES), suggesting that SES is a major source of between-family prediction through rGE mechanisms. These results provide insights into the patterns by which rGE contributes to GPS prediction, while ruling out confounding due to population stratification and assortative mating
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Exploring the role of genetic confounding in the association between maternal and offspring body mass index: evidence from three birth cohorts
BACKGROUND: Maternal pre-pregnancy body mass index (BMI) is positively associated with offspring birth weight (BW) and BMI in childhood and adulthood. Each of these associations could be due to causal intrauterine effects, or confounding (genetic or environmental), or some combination of these. Here we estimate the extent to which the association between maternal BMI and offspring body size is explained by offspring genotype, as a first step towards establishing the importance of genetic confounding. METHODS: We examined the associations of maternal pre-pregnancy BMI with offspring BW and BMI at 1, 5, 10 and 15 years, in three European birth cohorts (n ≤11 498). Bivariate Genomic-relatedness-based Restricted Maximum Likelihood implemented in the GCTA software (GCTA-GREML) was used to estimate the extent to which phenotypic covariance was explained by offspring genotype as captured by common imputed single nucleotide polymorphisms (SNPs). We merged individual participant data from all cohorts, enabling calculation of pooled estimates. RESULTS: Phenotypic covariance (equivalent here to Pearson's correlation coefficient) between maternal BMI and offspring phenotype was 0.15 [95% confidence interval (CI): 0.13, 0.17] for offspring BW, increasing to 0.29 (95% CI: 0.26, 0.31) for offspring 15 year BMI. Covariance explained by offspring genotype was negligible for BW [-0.04 (95% CI: -0.09, 0.01)], but increased to 0.12 (95% CI: 0.04, 0.21) at 15 years, which is equivalent to 43% (95% CI: 15%, 72%) of the phenotypic covariance. Sensitivity analyses using weight, BMI and ponderal index as the offspring phenotype at all ages showed similar results. CONCLUSIONS: Offspring genotype explains a substantial fraction of the covariance between maternal BMI and offspring adolescent BMI. This is consistent with a potentially important role for genetic confounding as a driver of the maternal BMI-offspring BMI association
Multiple Measures of Adiposity Are Associated with Mean Leukocyte Telomere Length in the Northern Finland Birth Cohort 1966
Studies of leukocyte telomere length (LTL) and adiposity have produced conflicting results, and the relationship between body mass index (BMI) and telomere length throughout life remains unclear. We therefore tested association of adult LTL measured in 5,598 participants with: i) childhood growth measures (BMI and age at adiposity rebound (AR)); ii) change in BMI from childhood to adulthood and iii) adult BMI, waist-to-hip ratio (WHR), body adiposity index (BAI). Childhood BMI at AR was positively associated with LTL at 31 years in women (P = 0.041). Adult BMI and WHR in both men (P = 0.025 and P = 0.049, respectively) and women (P = 0.029 and P = 0.008, respectively), and BAI in women (P = 0.021) were inversely associated with LTL at 31 years. An increase in standardised BMI between early childhood and adulthood was associated
with shorter adult LTL in women (P = 0.008). We show that LTL is inversely associated with multiple measures of adiposity in both men and women. Additionally, BMI increase in women from childhood to adulthood is associated with shorter telomeres at age 31, potentially indicating accelerated biological ageing
Identification of polymorphic inversions from genotypes
Background: Polymorphic inversions are a source of genetic variability with a direct impact on recombination frequencies. Given the difficulty of their experimental study, computational methods have been developed to infer their existence in a large number of individuals using genome-wide data of nucleotide variation. Methods based on haplotype tagging of known inversions attempt to classify individuals as having a normal or inverted allele. Other methods that measure differences between linkage disequilibrium attempt to identify regions with inversions but unable to classify subjects accurately, an essential requirement for association studies. Results: We present a novel method to both identify polymorphic inversions from genome-wide genotype data and classify individuals as containing a normal or inverted allele. Our method, a generalization of a published method for haplotype data [1], utilizes linkage between groups of SNPs to partition a set of individuals into normal and inverted subpopulations. We employ a sliding window scan to identify regions likely to have an inversion, and accumulation of evidence from neighboring SNPs is used to accurately determine the inversion status of each subject. Further, our approach detects inversions directly from genotype data, thus increasing its usability to current genome-wide association studies (GWAS). Conclusions: We demonstrate the accuracy of our method to detect inversions and classify individuals on principled-simulated genotypes, produced by the evolution of an inversion event within a coalescent model [2]. We applied our method to real genotype data from HapMap Phase III to characterize the inversion status of two known inversions within the regions 17q21 and 8p23 across 1184 individuals. Finally, we scan the full genomes of the European Origin (CEU) and Yoruba (YRI) HapMap samples. We find population-based evidence for 9 out of 15 well-established autosomic inversions, and for 52 regions previously predicted by independent experimental methods in ten (9+1) individuals [3,4]. We provide efficient implementations of both genotype and haplotype methods as a unified R package inveRsion
Human and Non-Human Primate Genomes Share Hotspots of Positive Selection
Among primates, genome-wide analysis of recent positive selection is currently
limited to the human species because it requires extensive sampling of genotypic
data from many individuals. The extent to which genes positively selected in
human also present adaptive changes in other primates therefore remains unknown.
This question is important because a gene that has been positively selected
independently in the human and in other primate lineages may be less likely to
be involved in human specific phenotypic changes such as dietary habits or
cognitive abilities. To answer this question, we analysed heterozygous Single
Nucleotide Polymorphisms (SNPs) in the genomes of single human, chimpanzee,
orangutan, and macaque individuals using a new method aiming to identify
selective sweeps genome-wide. We found an unexpectedly high number of
orthologous genes exhibiting signatures of a selective sweep simultaneously in
several primate species, suggesting the presence of hotspots of positive
selection. A similar significant excess is evident when comparing genes
positively selected during recent human evolution with genes subjected to
positive selection in their coding sequence in other primate lineages and
identified using a different test. These findings are further supported by
comparing several published human genome scans for positive selection with our
findings in non-human primate genomes. We thus provide extensive evidence that
the co-occurrence of positive selection in humans and in other primates at the
same genetic loci can be measured with only four species, an indication that it
may be a widespread phenomenon. The identification of positive selection in
humans alongside other primates is a powerful tool to outline those genes that
were selected uniquely during recent human evolution
Basin-Scale Control on the Phytoplankton Biomass in Lake Victoria, Africa
The relative bio-optical variability within Lake Victoria was analyzed through the spatio-temporal decomposition of a 1997–2004 dataset of remotely-sensed reflectance ratios in the visible spectral range. Results show a regular seasonal pattern with a phase shift (around 2 months) between the south and north parts of the lake. Interannual trends suggested a teleconnection between the lake dynamics and El-Niño phenomena. Both seasonal and interannual patterns were associated to conditions of light limitation for phytoplankton growth and basin-scale hydrodynamics on phytoplankton access to light. Phytoplankton blooms developed during the periods of lake surface warming and water column stability. The temporal shift apparent in the bio-optical seasonal cycles was related to the differential cooling of the lake surface by southeastern monsoon winds. North-south differences in the exposure to trade winds are supported by the orography of the Eastern Great Rift Valley. The result is that surface layer warming begins in the northern part of the lake while the formation of cool and dense water continues in the southern part. The resulting buoyancy field is sufficient to induce a lake-wide convective circulation and the tilting of the isotherms along the north-south axis. Once surface warming spreads over the whole lake, the phytoplankton bloom dynamics are subjected to the internal seiche derived from the relaxation of thermocline tilting. In 1997–98, El-Niño phenomenon weakened the monsoon wind flow which led to an increase in water column stability and a higher phytoplankton optical signal throughout the lake. This suggests that phytoplankton response to expected climate scenarios will be opposite to that proposed for nutrient-limited great lakes. The present analysis of remotely-sensed bio-optical properties in combination with environmental data provides a novel basin-scale framework for research and management strategies in Lake Victoria
- …
