594 research outputs found
De Broglie Wavelength of a Nonlocal Four-Photon
Superposition is one of the most distinct features of quantum theory and has
been demonstrated in numerous realizations of Young's classical double-slit
interference experiment and its analogues. However, quantum entanglement - a
significant coherent superposition in multiparticle systems - yields phenomena
that are much richer and more interesting than anything that can be seen in a
one-particle system. Among them, one important type of multi-particle
experiments uses path-entangled number-states, which exhibit pure higher-order
interference and allow novel applications in metrology and imaging such as
quantum interferometry and spectroscopy with phase sensitivity at the
Heisenberg limit or quantum lithography beyond the classical diffraction limit.
Up to now, in optical implementations of such schemes lower-order interference
effects would always decrease the overall performance at higher particle
numbers. They have thus been limited to two photons. We overcome this
limitation and demonstrate a linear-optics-based four-photon interferometer.
Observation of a four-particle mode-entangled state is confirmed by
interference fringes with a periodicity of one quarter of the single-photon
wavelength. This scheme can readily be extended to arbitrary photon numbers and
thus represents an important step towards realizable applications with
entanglement-enhanced performance.Comment: 19 pages, 4 figures, submitted on November 18, 200
Get screened: a pragmatic randomized controlled trial to increase mammography and colorectal cancer screening in a large, safety net practice
Abstract Background Most randomized controlled trials of interventions designed to promote cancer screening, particularly those targeting poor and minority patients, enroll selected patients. Relatively little is known about the benefits of these interventions among unselected patients. Methods/Design "Get Screened" is an American Cancer Society-sponsored randomized controlled trial designed to promote mammography and colorectal cancer screening in a primary care practice serving low-income patients. Eligible patients who are past due for mammography or colorectal cancer screening are entered into a tracking registry and randomly assigned to early or delayed intervention. This 6-month intervention is multimodal, involving patient prompts, clinician prompts, and outreach. At the time of the patient visit, eligible patients receive a low-literacy patient education tool. At the same time, clinicians receive a prompt to remind them to order the test and, when appropriate, a tool designed to simplify colorectal cancer screening decision-making. Patient outreach consists of personalized letters, automated telephone reminders, assistance with scheduling, and linkage of uninsured patients to the local National Breast and Cervical Cancer Early Detection program. Interventions are repeated for patients who fail to respond to early interventions. We will compare rates of screening between randomized groups, as well as planned secondary analyses of minority patients and uninsured patients. Data from the pilot phase show that this multimodal intervention triples rates of cancer screening (adjusted odds ratio 3.63; 95% CI 2.35 - 5.61). Discussion This study protocol is designed to assess a multimodal approach to promotion of breast and colorectal cancer screening among underserved patients. We hypothesize that a multimodal approach will significantly improve cancer screening rates. The trial was registered at Clinical Trials.gov NCT00818857http://deepblue.lib.umich.edu/bitstream/2027.42/78264/1/1472-6963-10-280.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78264/2/1472-6963-10-280.pdfPeer Reviewe
Impaired hypoglycaemia awareness in type 1 diabetes:lessons from the lab
Hypoglycaemia remains the most common metabolic adverse effect of insulin and sulfonylurea therapy in diabetes. Repeated exposure to hypoglycaemia leads to a change in the symptom complex that characterises hypoglycaemia, culminating in a clinical phenomenon referred to as impaired awareness of hypoglycaemia (IAH). IAH effects approximately 20–25% of people with type 1 diabetes and increases the risk of severe hypoglycaemia. This review focuses on the mechanisms that are responsible for the much higher frequency of hypoglycaemia in people with diabetes compared with those without, and subsequently how repeated exposure to hypoglycaemia leads to the development of IAH. The mechanisms that result in IAH development are incompletely understood and likely to reflect changes in multiple aspects of the counterregulatory response to hypoglycaemia, from adaptations within glucose and non-glucose-sensing cells to changes in the integrative networks that govern glucose homeostasis. Finally, we propose that the general process that incorporates many of these changes and results in IAH following recurrent hypoglycaemia is a form of adaptive memory called ‘habituation’
f(R) theories
Over the past decade, f(R) theories have been extensively studied as one of
the simplest modifications to General Relativity. In this article we review
various applications of f(R) theories to cosmology and gravity - such as
inflation, dark energy, local gravity constraints, cosmological perturbations,
and spherically symmetric solutions in weak and strong gravitational
backgrounds. We present a number of ways to distinguish those theories from
General Relativity observationally and experimentally. We also discuss the
extension to other modified gravity theories such as Brans-Dicke theory and
Gauss-Bonnet gravity, and address models that can satisfy both cosmological and
local gravity constraints.Comment: 156 pages, 14 figures, Invited review article in Living Reviews in
Relativity, Published version, Comments are welcom
In silico design and biological evaluation of a dual specificity kinase inhibitor targeting cell cycle progression and angiogenesis
Methodology: We have utilized a rational in silico-based approach to demonstrate the design and study of a novel compound that acts as a dual inhibitor of vascular endothelial growth factor receptor 2 (VEGFR2) and cyclin-dependent kinase 1 (CDK1). This compound acts by simultaneously inhibiting pro-Angiogenic signal transduction and cell cycle progression in primary endothelial cells. JK-31 displays potent in vitro activity against recombinant VEGFR2 and CDK1/cyclin B proteins comparable to previously characterized inhibitors. Dual inhibition of the vascular endothelial growth factor A (VEGF-A)-mediated signaling response and CDK1-mediated mitotic entry elicits anti-Angiogenic activity both in an endothelial-fibroblast co-culture model and a murine ex vivo model of angiogenesis
Cognitive predictors of shallow-orthography spelling speed and accuracy in 6th grade children
Spelling accuracy and time course was investigated in a sample of 100 Norwegian 6th grade students completing a standardized spelling-to-dictation task. Students responded by keyboard with accurate recordings of response-onset latency (RT) and inter-keypress interval (IKI). We determined effects of a number of child-level
cognitive ability factors, and of word-level factors—particularly the location within the word of a spelling challenge (e.g., letter doubling), if present. Spelling
accuracy was predicted by word reading (word split) performance, non-word spelling accuracy, keyboard key-finding speed and short-term memory span. Word reading performance predicted accuracy just for words with spelling challenges. For correctly spelled words, RT was predicted by non-word spelling response time and by speed on a key-finding task, and mean IKI by non-verbal cognitive ability, word reading, non-word spelling response time, and key-finding speed. Compared to words with no challenge, mean IKI was shorter for words with an initial challenge and longer for words with a mid-word challenge. These findings suggest that spelling is not fully planned when typing commences, a hypothesis that is confirmed by the fact that IKI immediately before within word challenges were reliably longer than elsewhere within the same word. Taken together our findings imply that routine classroom spelling tests better capture student competence if they focus not only on accuracy but also on production time course
Perspectives and Integration in SOLAS Science
Why a chapter on Perspectives and Integration in SOLAS Science in this book? SOLAS science by its nature deals with interactions that occur: across a wide spectrum of time and space scales, involve gases and particles, between the ocean and the atmosphere, across many disciplines including chemistry, biology, optics, physics, mathematics, computing, socio-economics and consequently interactions between many different scientists and across scientific generations. This chapter provides a guide through the remarkable diversity of cross-cutting approaches and tools in the gigantic puzzle of the SOLAS realm.
Here we overview the existing prime components of atmospheric and oceanic observing systems, with the acquisition of ocean–atmosphere observables either from in situ or from satellites, the rich hierarchy of models to test our knowledge of Earth System functioning, and the tremendous efforts accomplished over the last decade within the COST Action 735 and SOLAS Integration project frameworks to understand, as best we can, the current physical and biogeochemical state of the atmosphere and ocean commons. A few SOLAS integrative studies illustrate the full meaning of interactions, paving the way for even tighter connections between thematic fields. Ultimately, SOLAS research will also develop with an enhanced consideration of societal demand while preserving fundamental research coherency.
The exchange of energy, gases and particles across the air-sea interface is controlled by a variety of biological, chemical and physical processes that operate across broad spatial and temporal scales. These processes influence the composition, biogeochemical and chemical properties of both the oceanic and atmospheric boundary layers and ultimately shape the Earth system response to climate and environmental change, as detailed in the previous four chapters. In this cross-cutting chapter we present some of the SOLAS achievements over the last decade in terms of integration, upscaling observational information from process-oriented studies and expeditionary research with key tools such as remote sensing and modelling.
Here we do not pretend to encompass the entire legacy of SOLAS efforts but rather offer a selective view of some of the major integrative SOLAS studies that combined available pieces of the immense jigsaw puzzle. These include, for instance, COST efforts to build up global climatologies of SOLAS relevant parameters such as dimethyl sulphide, interconnection between volcanic ash and ecosystem response in the eastern subarctic North Pacific, optimal strategy to derive basin-scale CO2 uptake with good precision, or significant reduction of the uncertainties in sea-salt aerosol source functions. Predicting the future trajectory of Earth’s climate and habitability is the main task ahead. Some possible routes for the SOLAS scientific community to reach this overarching goal conclude the chapter
Recent improvements in the development of A2B adenosine receptor agonists
Adenosine is known to exert most of its physiological functions by acting as local modulator at four receptor subtypes named A1, A2A, A2B and A3 (ARs). Principally as a result of the difficulty in identifying potent and selective agonists, the A2B AR is the least extensively characterised of the adenosine receptors family. Despite these limitations, growing understanding of the physiological meaning of this target indicates promising therapeutic perspectives for specific ligands. As A2B AR signalling seems to be associated with pre/postconditioning cardioprotective and anti-inflammatory mechanisms, selective agonists may represent a new therapeutic group for patients suffering from coronary artery disease. Herein we present an overview of the recent advancements in identifying potent and selective A2B AR agonists reported in scientific and patent literature. These compounds can be classified into adenosine-like and nonadenosine ligands. Nucleoside-based agonists are the result of modifying adenosine by substitution at the N6-, C2-positions of the purine heterocycle and/or at the 5′-position of the ribose moiety or combinations of these substitutions. Compounds 1-deoxy-1-{6-[N′-(furan-2-carbonyl)-hydrazino]-9H-purin-9-yl}-N-ethyl-β-D-ribofuranuronamide (19, hA1Ki = 1050 nM, hA2AKi = 1550 nM, hA2B EC50 = 82 nM, hA3Ki > 5 μM) and its 2-chloro analogue 23 (hA1Ki = 3500 nM, hA2AKi = 4950 nM, hA2B EC50 = 210 nM, hA3Ki > 5 μM) were confirmed to be potent and selective full agonists in a cyclic adenosine monophosphate (cAMP) functional assay in Chinese hamster ovary (CHO) cells expressing hA2B AR. Nonribose ligands are represented by conveniently substituted dicarbonitrilepyridines, among which 2-[6-amino-3,5-dicyano-4-[4-(cyclopropylmethoxy)phenyl]pyridin-2-ylsulfanyl]acetamide (BAY-60–6583, hA1, hA2A, hA3 EC50 > 10 μM; hA2B EC50 = 3 nM) is currently under preclinical-phase investigation for treating coronary artery disorders and atherosclerosis
Pyrazolo-triazolo-pyrimidines as adenosine receptor antagonists: Effect of the N-5 bond type on the affinity and selectivity at the four adenosine receptor subtypes
In the last few years, many efforts have been made to search for potent and selective human A3 adenosine antagonists. In particular, one of the most promising human A3 adenosine receptor antagonists is represented by the pyrazolo-triazolo-pyrimidine family. This class of compounds has been strongly investigated from the point of view of structure-activity relationships. In particular, it has been observed that fundamental requisites for having both potency and selectivity at the human A3 adenosine receptors are the presence of a small substituent at the N8 position and an unsubstitued phenyl carbamoyl moiety at the N5 position. In this study, we report the role of the N5-bond type on the affinity and selectivity at the four adenosine receptor subtypes. The observed structure-activity relationships of this class of antagonists are also exhaustively rationalized using the recently published ligand-based homology modeling approach
Progress in the discovery of selective, high affinity A2B adenosine receptor antagonists as clinical candidates
The selective, high affinity A2B adenosine receptor (AdoR) antagonists that were synthesized by several research groups should aid in determining the role of the A2B AdoR in inflammatory diseases like asthma or rheumatoid arthritis (RA) and angiogenic diseases like diabetic retinopathy or cancer. CV Therapeutics scientists discovered the selective, high affinity A2B AdoR antagonist 10, a 8-(4-pyrazolyl)-xanthine derivative [CVT-6883, Ki(hA2B) = 22 nM; Ki(hA1) = 1,940 nM; Ki(hA2A) = 3,280; and Ki(hA3) = 1,070 nM] that has favorable pharmacokinetic (PK) properties (t1/2 = 4 h and F > 35% rat). Compound 10 demonstrated functional antagonism at the A2B AdoR (KB = 6 nM) and efficacy in a mouse model of asthma. In two phase 1 clinical trials, CVT-6883 was found to be safe, well tolerated, and suitable for once daily dosing. A second compound 20, 8-(5-pyrazolyl)-xanthine, has been nominated for development from Baraldi’s group in conjunction with King Pharmaceuticals that has favorable A2B AdoR affinity and selectivity [Ki(hA2B) = 5.5 nM; Ki(hA1) > 1,000 nM; Ki(hA2A) > 1,000; and Ki(hA3) > 1,000 nM], and it has been demonstrated to be a functional antagonist. A third compound 32, a 2-aminopyrimidine, from the Almirall group has high A2B AdoR affinity and selectivity [Ki(hA2B) = 17 nM; Ki(hA1) > 1,000 nM; Ki(hA2A) > 2,500; and Ki(hA3) > 1,000 nM], and 32 has been moved into preclinical safety testing. Since three highly selective, high affinity A2B AdoR antagonists have been nominated for development with 10 (CVT-6883) being the furthest along in the development process, the role of the A2B AdoR in various disease states will soon be established
- …
