1,137 research outputs found

    Measurements and ab initio Molecular Dynamics Simulations of the High Temperature Ferroelectric Transition in Hexagonal RMnO3

    Full text link
    Measurements of the structure of hexagonal RMnO3 (R=rare earths (Ho) and Y) for temperatures significantly above the ferroelectric transition temperature (TFE) were conducted to determine the nature of the transition. The local and long range structural measurements were complemented by ab initio molecular dynamics simulations. With respect to the Mn sites in YMnO3 and HoMnO3, we find no large atomic (bond distances or thermal factors), electronic structure changes or rehybridization on crossing TFE from local structural methods. The local symmetry about the Mn sites is preserved. With respect to the local structure about the Ho sites, a reduction of the average Ho-O bond with increased temperature is found. Ab initio molecular dynamics calculations on HoMnO3 reveal the detailed motions of all ions. Above ~900 K there are large displacements of the Ho, O3 and O4 ions along the z-axis which reduce the buckling of the MnO3/O4 planes. The changes result in O3/O4 ions moving to towards central points between pairs of Ho ions on the z-axis. These structural changes make the coordination of Ho sites more symmetric thus extinguishing the electric polarization. At significantly higher temperatures, rotation of the MnO5 polyhedra occurs without a significant change in electric polarization. The born effective charge tensor is found to be highly anisotropic at the O sites but does not change appreciably at high temperatures

    Wideband THz time domain spectroscopy based on optical rectification and electro-optic sampling

    Get PDF
    We present an analytical model describing the full electromagnetic propagation in a THz time-domain spectroscopy (THz-TDS) system, from the THz pulses via Optical Rectification to the detection via Electro Optic-Sampling. While several investigations deal singularly with the many elements that constitute a THz-TDS, in our work we pay particular attention to the modelling of the time-frequency behaviour of all the stages which compose the experimental set-up. Therefore, our model considers the following main aspects: (i) pump beam focusing into the generation crystal; (ii) phase-matching inside both the generation and detection crystals; (iii) chromatic dispersion and absorption inside the crystals; (iv) Fabry-Perot effect; (v) diffraction outside, i.e. along the propagation, (vi) focalization and overlapping between THz and probe beams, (vii) electro-optic sampling. In order to validate our model, we report on the comparison between the simulations and the experimental data obtained from the same set-up, showing their good agreement

    Effects of uniaxial strain in LaMnO_3

    Full text link
    The effects of uniaxial strain on the structural, orbital, optical, and magnetic properties of LaMnO_3 are calculated using a general elastic energy expression, along with a tight-binding parameterization of the band theory. Tensile uniaxial strain of the order of 2 % (i.e., of the order of magnitude of those induced in thin films by lattice mismatch with substrates) is found to lead to changes in the magnetic ground state, leading to dramatic changes in the band structure and optical conductivity spectrum. The magnetostriction effect associated with the Neel transition of bulk(unstrained) LaMnO_3 is also determined. Due to the Jahn-Teller coupling, the uniform tetragonal distortion mode is softer in LaMnO_3 than in doped cubic manganates. Reasons why the observed (\pi \pi 0) orbital ordering is favored over a (\pi \pi \pi) periodicity are discussed.Comment: 9 figures, submitted in Phys. Rev.

    A Solvable Regime of Disorder and Interactions in Ballistic Nanostructures, Part I: Consequences for Coulomb Blockade

    Full text link
    We provide a framework for analyzing the problem of interacting electrons in a ballistic quantum dot with chaotic boundary conditions within an energy ETE_T (the Thouless energy) of the Fermi energy. Within this window we show that the interactions can be characterized by Landau Fermi liquid parameters. When gg, the dimensionless conductance of the dot, is large, we find that the disordered interacting problem can be solved in a saddle-point approximation which becomes exact as gg\to\infty (as in a large-N theory). The infinite gg theory shows a transition to a strong-coupling phase characterized by the same order parameter as in the Pomeranchuk transition in clean systems (a spontaneous interaction-induced Fermi surface distortion), but smeared and pinned by disorder. At finite gg, the two phases and critical point evolve into three regimes in the um1/gu_m-1/g plane -- weak- and strong-coupling regimes separated by crossover lines from a quantum-critical regime controlled by the quantum critical point. In the strong-coupling and quantum-critical regions, the quasiparticle acquires a width of the same order as the level spacing Δ\Delta within a few Δ\Delta's of the Fermi energy due to coupling to collective excitations. In the strong coupling regime if mm is odd, the dot will (if isolated) cross over from the orthogonal to unitary ensemble for an exponentially small external flux, or will (if strongly coupled to leads) break time-reversal symmetry spontaneously.Comment: 33 pages, 14 figures. Very minor changes. We have clarified that we are treating charge-channel instabilities in spinful systems, leaving spin-channel instabilities for future work. No substantive results are change

    Clinical significance of VEGF-A, -C and -D expression in esophageal malignancies

    Get PDF
    Vascular endothelial growth factors ( VEGF)- A, - C and - D are members of the proangiogenic VEGF family of glycoproteins. VEGF-A is known to be the most important angiogenic factor under physiological and pathological conditions, while VEGF-C and VEGF-D are implicated in the development and sprouting of lymphatic vessels, so called lymphangiogenesis. Local tumor progression, lymph node metastases and hematogenous tumor spread are important prognostic factors for esophageal carcinoma ( EC), one of the most lethal malignancies throughout the world. We found solid evidence in the literature that VEGF expression contributes to tumor angiogenesis, tumor progression and lymph node metastasis in esophageal squamous cell carcinoma ( SCC), and many authors could show a prognostic value for VEGF-assessment. In adenocarcinoma (AC) of the esophagus angiogenic properties are acquired in early stages, particularly in precancerous lesions like Barrett's dysplasia. However, VEGF expression fails to give prognostic information in AC of the esophagus. VEGF-C and VEGF-D were detected in SCC and dysplastic lesions, but not in normal mucosa of the esophagus. VEGF-C expression might be associated with lymphatic tumor invasion, lymph node metastases and advanced disease in esophageal SCC and AC. Therapeutic interference with VEGF signaling may prove to be a promising way of anti-angiogenic co-treatment in esophageal carcinoma. However, concrete clinical data are still pending

    Beyond the standard seesaw: neutrino masses from Kahler operators and broken supersymmetry

    Get PDF
    We investigate supersymmetric scenarios in which neutrino masses are generated by effective d=6 operators in the Kahler potential, rather than by the standard d=5 superpotential operator. First, we discuss some general features of such effective operators, also including SUSY-breaking insertions, and compute the relevant renormalization group equations. Contributions to neutrino masses arise at low energy both at the tree level and through finite threshold corrections. In the second part we present simple explicit realizations in which those Kahler operators arise by integrating out heavy SU(2)_W triplets, as in the type II seesaw. Distinct scenarios emerge, depending on the mechanism and the scale of SUSY-breaking mediation. In particular, we propose an appealing and economical picture in which the heavy seesaw mediators are also messengers of SUSY breaking. In this case, strong correlations exist among neutrino parameters, sparticle and Higgs masses, as well as lepton flavour violating processes. Hence, this scenario can be tested at high-energy colliders, such as the LHC, and at lower energy experiments that measure neutrino parameters or search for rare lepton decays.Comment: LaTeX, 34 pages; some corrections in Section

    Measurement of Atmospheric Neutrino Oscillations with the ANTARES Neutrino Telescope

    Get PDF
    The data taken with the ANTARES neutrino telescope from 2007 to 2010, a total live time of 863 days, are used to measure the oscillation parameters of atmospheric neutrinos. Muon tracks are reconstructed with energies as low as 20 GeV. Neutrino oscillations will cause a suppression of vertical upgoing muon neutrinos of such energies crossing the Earth. The parameters determining the oscillation of atmospheric neutrinos are extracted by fitting the event rate as a function of the ratio of the estimated neutrino energy and reconstructed flight path through the Earth. Measurement contours of the oscillation parameters in a two-flavour approximation are derived. Assuming maximum mixing, a mass difference of Δm322=(3.1±0.9)103\Delta m_{32}^2=(3.1\pm 0.9)\cdot 10^{-3} eV2^2 is obtained, in good agreement with the world average value.Comment: 9 pages, 5 figure

    Electronic states and quantum transport in double-wall carbon nanotubes

    Full text link
    Electronic states and transport properties of double-wall carbon nanotubes without impurities are studied in a systematic manner. It is revealed that scattering in the bulk is negligible and the number of channels determines the average conductance. In the case of general incommensurate tubes, separation of degenerated energy levels due to intertube transfer is suppressed in the energy region higher than the Fermi energy but not in the energy region lower than that. Accordingly, in the former case, there are few effects of intertube transfer on the conductance, while in the latter case, separation of degenerated energy levels leads to large reduction of the conductance. It is also found that in some cases antiresonance with edge states in inner tubes causes an anomalous conductance quantization, G=e2/πG=e^2/\pi\hbar, near the Fermi energy.Comment: 24 pages, 13 figures, to be published in Physical Review

    Second Generation Leptoquark Search in p\bar{p} Collisions at s\sqrt{s} = 1.8 TeV

    Full text link
    We report on a search for second generation leptoquarks with the D\O\ detector at the Fermilab Tevatron ppˉp\bar{p} collider at s\sqrt{s} = 1.8 TeV. This search is based on 12.7 pb1^{-1} of data. Second generation leptoquarks are assumed to be produced in pairs and to decay into a muon and quark with branching ratio β\beta or to neutrino and quark with branching ratio (1β)(1-\beta). We obtain cross section times branching ratio limits as a function of leptoquark mass and set a lower limit on the leptoquark mass of 111 GeV/c2^{2} for β=1\beta = 1 and 89 GeV/c2^{2} for β=0.5\beta = 0.5 at the 95%\ confidence level.Comment: 18 pages, FERMILAB-PUB-95/185-
    corecore