7,680 research outputs found

    Simple description of the anisotropic two-channel Kondo problem

    Full text link
    We adapt strong-coupling methods first used in the one-channel Kondo model to develop a simple description of the spin-121\over 2 two-channel Kondo model with channel anisotropy. Our method exploits spin-charge decoupling to develop a compactified Hamiltonian that describes the spin excitations. The structure of the fixed-point Hamiltonian and quasiparticle impurity S-matrix are incompatible with a Fermi liquid description.Comment: 4 pages, latex (uses revtex and epsf macros) with 3 figures - all in a self unpacking uuencoded file. Revisions include changes to Fig. 1(a) and detailed discussion of the spin excitation

    Algebraic Approach to Interacting Quantum Systems

    Full text link
    We present an algebraic framework for interacting extended quantum systems to study complex phenomena characterized by the coexistence and competition of different states of matter. We start by showing how to connect different (spin-particle-gauge) {\it languages} by means of exact mappings (isomorphisms) that we name {\it dictionaries} and prove a fundamental theorem establishing when two arbitrary languages can be connected. These mappings serve to unravel symmetries which are hidden in one representation but become manifest in another. In addition, we establish a formal link between seemingly unrelated physical phenomena by changing the language of our model description. This link leads to the idea of {\it universality} or equivalence. Moreover, we introduce the novel concept of {\it emergent symmetry} as another symmetry guiding principle. By introducing the notion of {\it hierarchical languages}, we determine the quantum phase diagram of lattice models (previously unsolved) and unveil hidden order parameters to explore new states of matter. Hierarchical languages also constitute an essential tool to provide a unified description of phases which compete and coexist. Overall, our framework provides a simple and systematic methodology to predict and discover new kinds of orders. Another aspect exploited by the present formalism is the relation between condensed matter and lattice gauge theories through quantum link models. We conclude discussing applications of these dictionaries to the area of quantum information and computation with emphasis in building new models of computation and quantum programming languages.Comment: 44 pages, 14 psfigures. Advances in Physics 53, 1 (2004

    A model for the doped copper oxide compounds

    Get PDF
    We present a relativistic spin-fermion model for the cuprates, in which both the charge and spin degrees of freedom are treated dynamically. The spin-charge coupling parameter is associated with the doping fraction. The model is able to account for the various phases of the cuprates and their properties, not only at low and intermediate doping but also for (highly) over-doped compounds. In particular, we acquire a qualitative understanding of high-T_c superconductivity through Bose-Einstein condensation of bound charge pairs. The mechanism that binds these pairs does not require a Fermi sea.Comment: 9 pages, 2 postscript figures. Version accepted for publication in Europhys. Let

    Kondo tunneling through real and artificial molecules

    Full text link
    When a cerocene molecule is chemisorbed on metallic substrate, or when an asymmetric double dot is hybridized with itinerant electrons, its singlet ground state crosses its lowly excited triplet state, leading to a competition between the Zhang-Rice mechanism of singlet-triplet splitting in a confined cluster and the Kondo effect (which accompanies the tunneling through quantum dot under a Coulomb blockade restriction). The rich physics of an underscreened S=1 Kondo impurity in the presence of low-lying triplet/singlet excitations is exposed. Estimates of the magnetic susceptibility and the electric conductance are presented.Comment: 4 two-column revtex pages including 1 eps figur

    Moment of Inertia and Superfluidity of a Trapped Bose Gas

    Full text link
    The temperature dependence of the moment of inertia of a dilute Bose gas confined in a harmonic trap is determined. Deviations from the rigid value, due to the occurrence of Bose-Einstein condensation, reveal the superfluid behaviour of the system. In the noninteracting gas these deviations become important at temperatures of the order of TcN1/12T_c N^{-1/12}. The role of interactions is also discussed.Comment: 10 pages, REVTEX, 1 figure attached as postscript fil

    Multi frequency evaporative cooling to BEC in a high magnetic field

    Get PDF
    We demonstrate a way to circumvent the interruption of evaporative cooling observed at high bias field for 87^{87}Rb atoms trapped in the (F=2, m=+2) ground state. Our scheme uses a 3-frequencies-RF-knife achieved by mixing two RF frequencies. This compensates part of the non linearity of the Zeeman effect, allowing us to achieve BEC where standard 1-frequency-RF-knife evaporation method did not work. We are able to get efficient evaporative cooling, provided that the residual detuning between the transition and the RF frequencies in our scheme is smaller than the power broadening of the RF transitions at the end of the evaporation ramp.Comment: 12 pages, 2 figure

    The fine-tuning price of the early LHC

    Full text link
    LHC already probed and excluded half of the parameter space of the Constrained Minimal Supersymmetric Standard Model allowed by previous experiments. Only about 0.3% of the CMSSM parameter space survives. This fraction rises to about 0.9% if the bound on the Higgs mass can be circumvented.Comment: 7 pages. v3: updated with new bounds from ATLAS and CMS at 1.1/fb presented at the EPS-HEP-2011 conferenc

    Bose-Fermi Mixtures in Optical Lattices

    Get PDF
    Using mean field theory, we have studied Bose-Fermi mixtures in a one-dimensional optical lattice in the case of an attractive boson-fermion interaction. We consider that the fermions are in the degenerate regime and that the laser intensities are such that quantum coherence across the condensate is ensured. We discuss the effect of the optical lattice on the critical rotational frequency for vortex line creation in the Bose-Einstein condensate, as well as how it affects the stability of the boson-fermion mixture. A reduction of the critical frequency for nucleating a vortex is observed as the strength of the applied laser is increased. The onset of instability of the mixture occurs for a sizeably lower number of fermions in the presence of a deep optical lattice.Comment: 7 pages, 6 figures, revtex4, 14th International Laser Physics Workshop (LPHYS'05

    Effect of anharmonicities in the critical number of trapped condensed atoms with attractive two-body interaction

    Full text link
    We determine the quantitative effect, in the maximum number of particles and other static observables, due to small anharmonic terms added to the confining potential of an atomic condensed system with negative two-body interaction. As an example of how a cubic or quartic anharmonic term can affect the maximum number of particles, we consider the trap parameters and the results given by Roberts et al. [Phys. Rev. Lett. 86, 4211 (2001)]. However, this study can be easily transferred to other trap geometries to estimate anharmonic effects.Comment: Total of 5 pages, 3 figures and 1 table. To appear in Phys. Rev.

    Coupling Classical and Quantum Variables using Continuous Quantum Measurement Theory

    Full text link
    We propose a system of equations to describe the interaction of a quasiclassical variable XX with a set of quantum variables xx that goes beyond the usual mean field approximation. The idea is to regard the quantum system as continuously and imprecisely measured by the classical system. The effective equations of motion for the classical system therefore consist of treating the quantum variable xx as a stochastic c-number \x (t) the probability distibution for which is given by the theory of continuous quantum measurements. The resulting theory is similar to the usual mean field equations (in which xx is replaced by its quantum expectation value) but with two differences: a noise term, and more importantly, the state of the quantum subsystem evolves according to the stochastic non-linear Schrodinger equation of a continuously measured system. In the case in which the quantum system starts out in a superposition of well-separated localized states, the classical system goes into a statistical mixture of trajectories, one trajectory for each individual localized state.Comment: 11 pages, plain Tex (with revised settings for \vsize and \voffset to accommodate US paper sizes
    corecore