803 research outputs found
Increase of the Number of Detectable Gravitational Waves Signals due to Gravitational Lensing
This article deals with the gravitational lensing (GL) of gravitational waves
(GW). We compute the increase in the number of detected GW events due to GL.
First, we check that geometrical optics is valid for the GW frequency range on
which Earth-based detectors are sensitive, and that this is also partially true
for what concerns the future space-based interferometer LISA. To infer this
result, both the diffraction parameter and a cut-off frequency are computed.
Then, the variation in the number of GW signals is estimated in the general
case, and applied to some lens models: point mass lens and singular isothermal
sphere (SIS profile). An estimation of the magnification factor has also been
done for the softened isothermal sphere and for the King profile. The results
appear to be strongly model-dependent, but in all cases the increase in the
number of detected GW signals is negligible. The use of time delays among
images is also investigated.Comment: Accepted for publication in General Relativity and Gravitatio
Science with Simbol-X
Simbol-X is a French-Italian mission, with a participation of German
laboratories, for X-ray astronomy in the wide 0.5-80 keV band. Taking advantage
of emerging technology in mirror manufacturing and spacecraft formation flying,
Simbol-X will push grazing incidence imaging up to ~80 keV, providing an
improvement of roughly three orders of magnitude in sensitivity and angular
resolution compared to all instruments that have operated so far above 10 keV.
This will open a new window in X-ray astronomy, allowing breakthrough studies
on black hole physics and census and particle acceleration mechanisms. We
describe briefly the main scientific goals of the Simbol-X mission, giving a
few examples aimed at highlighting key issues of the Simbol-X design.Comment: Proc. of the workshop "Simbol-X: The hard X-ray universe in focus",
Bologna 14-16 May, 200
GRB030406 an extremely hard burst outside of the INTEGRAL field of view
Using the IBIS Compton mode, the INTEGRAL satellite is able to detect and
localize bright and hard GRBs, which happen outside of the nominal INTEGRAL
telescopes field of view. We have developed a method of analyzing such INTEGRAL
data to obtain the burst location and spectra. We present the results for the
case of GRB030406. The burst is localized with the Compton events, and the
location is consistent with the previous Interplanetary Network position. A
spectral analysis is possible with the detailed modeling of the detector
response for such a far off-axis source with the offset of 36.9 . The
average spectrum of the burst is extremely hard: the photon index above 400
\kev is -1.7, with no evidence of a break up to 1.1 \mev at 90% confidence
level.Comment: Astronomy and Astrophysics in pres
The XMM-Newton Project
The abundance of high-redshift galaxy clusters depends sensitively on the
matter density \OmM and, to a lesser extent, on the cosmological constant
. Measurements of this abundance therefore constrain these fundamental
cosmological parameters, and in a manner independent and complementary to other
methods, such as observations of the cosmic microwave background and distance
measurements. Cluster abundance is best measured by the X-ray temperature
function, as opposed to luminosity, because temperature and mass are tightly
correlated, as demonstrated by numerical simulations. Taking advantage of the
sensitivity of XMM-Newton, our Guaranteed Time program aims at measuring the
temperature of the highest redshift (z>0.4) SHARC clusters, with the ultimate
goal of constraining both \OmM and .Comment: To appear in the Proceedings of the XXI Moriond Conference: Galaxy
Clusters and the High Redshift Universe Observed in X-rays, edited by D.
Neumann, F. Durret, & J. Tran Thanh Va
Evolution of Iron K Line Emission in the Black Hole Candidate GX 339-4
GX 339-4 was regularly monitored with RXTE during a period (in 1999) when its
X-ray flux decreased significantly (from 4.2 erg cm to 7.6 erg cms in the 3--20 keV band),
as the source settled into the ``off state''. Our spectral analysis revealed
the presence of a prominent iron K line in the observed spectrum of
the source for all observations. The line shows an interesting evolution: it is
centered at 6.4 keV when the measured flux is above 5
erg cm, but is shifted to 6.7 keV at lower fluxes. The
equivalent width of the line appears to increase significantly toward lower
fluxes, although it is likely to be sensitive to calibration uncertainties.
While the fluorescent emission of neutral or mildly ionized iron atoms in the
accretion disk can perhaps account for the 6.4 keV line, as is often invoked
for black hole candidates, it seems difficult to understand the 6.7 keV line
with this mechanism, because the disk should be less ionized at lower fluxes
(unless its density changes drastically). On the other hand, the 6.7 keV line
might be due to recombination cascade of hydrogen or helium like iron ions in
an optically thin, highly ionized plasma. We discuss the results in the context
of proposed accretion models.Comment: 18 pages, 2 figures, accepted for publication in the ApJ in v552n2p
May 10, 2001 issu
Characterizing a new class of variability in GRS 1915+105 with simultaneous INTEGRAL/RXTE observations
We report on the analysis of 100 ks INTEGRAL observations of the Galactic
microquasar GRS 1915+105. We focus on INTEGRAL Revolution number 48 when the
source was found to exhibit a new type of variability as preliminarily reported
in Hannikainen et al. (2003). The variability pattern, which we name , is
characterized by a pulsing behaviour, consisting of a main pulse and a shorter,
softer, and smaller amplitude precursor pulse, on a timescale of 5 minutes in
the JEM-X 3-35 keV lightcurve. We also present simultaneous RXTE data. From a
study of the individual RXTE/PCA pulse profiles we find that the rising phase
is shorter and harder than the declining phase, which is opposite to what has
been observed in other otherwise similar variability classes in this source.
The position in the colour-colour diagram throughout the revolution corresponds
to State A (Belloni et al. 2000) but not to any previously known variability
class. We separated the INTEGRAL data into two subsets covering the maxima and
minima of the pulses and fitted the resulting two broadband spectra with a
hybrid thermal--non-thermal Comptonization model. The fits show the source to
be in a soft state characterized by a strong disc component below ~6 keV and
Comptonization by both thermal and non-thermal electrons at higher energies.Comment: Accepted for publication in A&A. 11 pages, 10 figures, 4 in colour.
Original figures can be found at
http://www.astro.helsinki.fi/~diana/grs1915_rev48. Author affiliations
correcte
Improved Limits on decays to invisible final states
We establish improved upper limits on branching fractions for B0 decays to
final States 10 where the decay products are purely invisible (i.e., no
observable final state particles) and for final states where the only visible
product is a photon. Within the Standard Model, these decays have branching
fractions that are below the current experimental sensitivity, but various
models of physics beyond the Standard Model predict significant contributions
for these channels. Using 471 million BB pairs collected at the Y(4S) resonance
by the BABAR experiment at the PEP-II e+e- storage ring at the SLAC National
Accelerator Laboratory, we establish upper limits at the 90% confidence level
of 2.4x10^-5 for the branching fraction of B0-->Invisible and 1.7x10^-5 for the
branching fraction of B0-->Invisible+gammaComment: 8 pages, 3 postscript figures, submitted to Phys. Rev. D (Rapid
Communications
Recommended from our members
Precise Measurement of the e+ e- --> pi+ pi- (gamma) Cross Section with the Initial-State Radiation Method at BABAR
A precise measurement of the cross section of the process
from threshold to an energy of 3GeV is obtained
with the initial-state radiation (ISR) method using 232fb of data
collected with the BaBar detector at center-of-mass energies near
10.6GeV. The ISR luminosity is determined from a study of the leptonic process
, which is found to agree with the
next-to-leading-order QED prediction to within 1.1%. The cross section for the
process is obtained with a systematic uncertainty
of 0.5% in the dominant resonance region. The leading-order hadronic
contribution to the muon magnetic anomaly calculated using the measured
cross section from threshold to 1.8GeV is .Comment: 58 pages, 56 figures, to be submitted to Phys. Rev.
Recommended from our members
Measurement of the Time-Dependent CP Asymmetry of Partially Reconstructed B0->D*+D*- Decays
We present a new measurement of the time-dependent CP asymmetry of B0->D*+D*-
decays using (471+-5) million BBbar pairs collected with the BaBar detector at
the PEP-II B Factory at the SLAC National Accelerator Laboratory. Using the
technique of partial reconstruction, we measure the time-dependent CP asymmetry
parameters S=-0.34+-0.12+-0.05$ and C=+0.15+-0.09+-0.04. Using the value for
the CP-odd fraction R_perp=0.158+-0.028+-0.006, previously measured by BaBar
with fully reconstructed B0->D*+D*- events, we extract the CP-even components
S+=-0.49+-0.18+-0.07+-0.04 and C+=+0.15+-0.09+-0.04. In each case, the first
uncertainty is statistical and the second is systematic; the third uncertainty
on S+ is the contribution from the uncertainty on R_perp. The measured value of
the CP-even component S+ is consistent with the value of sin(2Beta) measured in
b->(ccbar)s transitions, and with the Standard Model expectation of small
penguin contributions.Comment: 17 pages, 7 figures, submitted to Physical Review
Search for lepton-number violating processes in B+ -> h- l+ l+ decays
We have searched for the lepton-number violating processes B+ -> h- l+ l+
with h- = K-/pi- and l+ = e+/mu+, using a sample of 471+/-3 million BBbar
events collected with the BaBar detector at the PEP-II e+e- collider at the
SLAC National Accelerator Laboratory. We find no evidence for these decays and
place 90% confidence level upper limits on their branching fractions Br(B+ ->
pi- e+ e+) K- e+ e+) pi-
mu+ mu+) K- mu+ mu+) < 6.7 x 10^{-8}.Comment: 8 pages, 4 postscript figures, submitted to Phys. Rev. D. R
- …
