1,331 research outputs found
Testing new physics with the electron g-2
We argue that the anomalous magnetic moment of the electron (a_e) can be used
to probe new physics. We show that the present bound on new-physics
contributions to a_e is 8*10^-13, but the sensitivity can be improved by about
an order of magnitude with new measurements of a_e and more refined
determinations of alpha in atomic-physics experiments. Tests on new-physics
effects in a_e can play a crucial role in the interpretation of the observed
discrepancy in the anomalous magnetic moment of the muon (a_mu). In a large
class of models, new contributions to magnetic moments scale with the square of
lepton masses and thus the anomaly in a_mu suggests a new-physics effect in a_e
of (0.7 +- 0.2)*10^-13. We also present examples of new-physics theories in
which this scaling is violated and larger effects in a_e are expected. In such
models the value of a_e is correlated with specific predictions for processes
with violation of lepton number or lepton universality, and with the electric
dipole moment of the electron.Comment: 34 pages, 7 figures. Minor changes and references adde
New Physics in b -> s mu+ mu-: CP-Conserving Observables
We perform a comprehensive study of the impact of new-physics operators with
different Lorentz structures on decays involving the b -> s mu+ mu- transition.
We examine the effects of new vector-axial vector (VA), scalar-pseudoscalar
(SP) and tensor (T) interactions on the differential branching ratios and
forward-backward asymmetries (A_{FB}'s) of Bsbar -> mu+ mu-, Bdbar -> Xs mu+
mu-, Bsbar -> mu+ mu- gamma, Bdbar -> Kbar mu+ mu-, and Bdbar -> K* mu+ mu-,
taking the new-physics couplings to be real. In Bdbar -> K* mu+ mu-, we further
explore the polarization fraction f_L, the angular asymmetry A_T^{(2)}, and the
longitudinal-transverse asymmetry A_{LT}. We identify the Lorentz structures
that would significantly impact these observables, providing analytical
arguments in terms of the contributions from the individual operators and their
interference terms. In particular, we show that while the new VA operators can
significantly enhance most of the asymmetries beyond the Standard Model
predictions, the SP and T operators can do this only for A_{FB} in Bdbar ->
Kbar mu+ mu-.Comment: 54 pages, JHEP format, 45 figures (included). 5/6/2013: typos in K*
mu mu angular coefficients corrected, typos in Eq. (D.12) corrected, added a
missing term in I3LT in Eq. (D.16). Numerical analysis unchange
New-physics contributions to the forward-backward asymmetry in B -> K* mu+ mu-
We study the forward-backward asymmetry (AFB) and the differential branching
ratio (DBR) in B -> K* mu+ mu- in the presence of new physics (NP) with
different Lorentz structures. We consider NP contributions from vector-axial
vector (VA), scalar-pseudoscalar (SP), and tensor (T) operators, as well as
their combinations. We calculate the effects of these new Lorentz structures in
the low-q^2 and high-q^2 regions, and explain their features through analytic
approximations. We find two mechanisms that can give a significant deviation
from the standard-model predictions, in the direction indicated by the recent
measurement of AFB by the Belle experiment. They involve the addition of the
following NP operators: (i) VA, or (ii) a combination of SP and T (slightly
better than T alone). These two mechanisms can be distinguished through
measurements of DBR in B -> K* mu+ mu- and AFB in B -> K mu+ mu-.Comment: 33 pages, revtex, 9 figures. Paper originally submitted with the
wrong figures. This is corrected in the replacement. An incorrect factor of 2
found in a formula. This is corrected and figures modified. Conclusions
unchanged. Typos correcte
D*-->Dpi and D*-->Dgamma decays: Axial coupling and Magnetic moment of D* meson
The axial coupling and the magnetic moment of D*-meson or, more specifically,
the couplings g(D*Dpi) and g(D*Dgamma), encode the non-perturbative QCD effects
describing the decays D*-->Dpi and D*-->Dgamma. We compute these quantities by
means of lattice QCD with Nf=2 dynamical quarks, by employing the Wilson
("clover") action. On our finer lattice (a=0.065 fm) we obtain: g(D*Dpi)=20 +/-
2, and g(D0*D0gamma)=[2.0 +/- 0.6]/GeV. This is the first determination of
g(D0*D0gamma) on the lattice. We also provide a short phenomenological
discussion and the comparison of our result with experiment and with the
results quoted in the literature.Comment: 22 pages, 3 figure
Energy Linearity and Resolution of the ATLAS Electromagnetic Barrel Calorimeter in an Electron Test-Beam
A module of the ATLAS electromagnetic barrel liquid argon calorimeter was
exposed to the CERN electron test-beam at the H8 beam line upgraded for
precision momentum measurement. The available energies of the electron beam
ranged from 10 to 245 GeV. The electron beam impinged at one point
corresponding to a pseudo-rapidity of eta=0.687 and an azimuthal angle of
phi=0.28 in the ATLAS coordinate system. A detailed study of several effects
biasing the electron energy measurement allowed an energy reconstruction
procedure to be developed that ensures a good linearity and a good resolution.
Use is made of detailed Monte Carlo simulations based on Geant which describe
the longitudinal and transverse shower profiles as well as the energy
distributions. For electron energies between 15 GeV and 180 GeV the deviation
of the measured incident electron energy over the beam energy is within 0.1%.
The systematic uncertainty of the measurement is about 0.1% at low energies and
negligible at high energies. The energy resolution is found to be about 10%
sqrt(E) for the sampling term and about 0.2% for the local constant term
Simultaneous Extraction of the Fermi constant and PMNS matrix elements in the presence of a fourth generation
Several recent studies performed on constraints of a fourth generation of
quarks and leptons suffer from the ad-hoc assumption that 3 x 3 unitarity holds
for the first three generations in the neutrino sector. Only under this
assumption one is able to determine the Fermi constant G_F from the muon
lifetime measurement with the claimed precision of G_F = 1.16637 (1) x 10^-5
GeV^-2. We study how well G_F can be extracted within the framework of four
generations from leptonic and radiative mu and tau decays, as well as from K_l3
decays and leptonic decays of charged pions, and we discuss the role of lepton
universality tests in this context. We emphasize that constraints on a fourth
generation from quark and lepton flavour observables and from electroweak
precision observables can only be obtained in a consistent way if these three
sectors are considered simultaneously. In the combined fit to leptonic and
radiative mu and tau decays, K_l3 decays and leptonic decays of charged pions
we find a p-value of 2.6% for the fourth generation matrix element |U_{e 4}|=0
of the neutrino mixing matrix.Comment: 19 pages, 3 figures with 16 subfigures, references and text added
refering to earlier related work, figures and text in discussion section
added, results and conclusions unchange
Beyond the standard seesaw: neutrino masses from Kahler operators and broken supersymmetry
We investigate supersymmetric scenarios in which neutrino masses are
generated by effective d=6 operators in the Kahler potential, rather than by
the standard d=5 superpotential operator. First, we discuss some general
features of such effective operators, also including SUSY-breaking insertions,
and compute the relevant renormalization group equations. Contributions to
neutrino masses arise at low energy both at the tree level and through finite
threshold corrections. In the second part we present simple explicit
realizations in which those Kahler operators arise by integrating out heavy
SU(2)_W triplets, as in the type II seesaw. Distinct scenarios emerge,
depending on the mechanism and the scale of SUSY-breaking mediation. In
particular, we propose an appealing and economical picture in which the heavy
seesaw mediators are also messengers of SUSY breaking. In this case, strong
correlations exist among neutrino parameters, sparticle and Higgs masses, as
well as lepton flavour violating processes. Hence, this scenario can be tested
at high-energy colliders, such as the LHC, and at lower energy experiments that
measure neutrino parameters or search for rare lepton decays.Comment: LaTeX, 34 pages; some corrections in Section
Background Light in Potential Sites for the ANTARES Undersea Neutrino Telescope
The ANTARES collaboration has performed a series of {\em in situ}
measurements to study the background light for a planned undersea neutrino
telescope. Such background can be caused by K decays or by biological
activity. We report on measurements at two sites in the Mediterranean Sea at
depths of 2400~m and 2700~m, respectively. Three photomultiplier tubes were
used to measure single counting rates and coincidence rates for pairs of tubes
at various distances. The background rate is seen to consist of three
components: a constant rate due to K decays, a continuum rate that
varies on a time scale of several hours simultaneously over distances up to at
least 40~m, and random bursts a few seconds long that are only correlated in
time over distances of the order of a meter. A trigger requiring coincidences
between nearby photomultiplier tubes should reduce the trigger rate for a
neutrino telescope to a manageable level with only a small loss in efficiency.Comment: 18 pages, 8 figures, accepted for publication in Astroparticle
Physic
Measurement of Atmospheric Neutrino Oscillations with the ANTARES Neutrino Telescope
The data taken with the ANTARES neutrino telescope from 2007 to 2010, a total
live time of 863 days, are used to measure the oscillation parameters of
atmospheric neutrinos. Muon tracks are reconstructed with energies as low as 20
GeV. Neutrino oscillations will cause a suppression of vertical upgoing muon
neutrinos of such energies crossing the Earth. The parameters determining the
oscillation of atmospheric neutrinos are extracted by fitting the event rate as
a function of the ratio of the estimated neutrino energy and reconstructed
flight path through the Earth. Measurement contours of the oscillation
parameters in a two-flavour approximation are derived. Assuming maximum mixing,
a mass difference of eV is
obtained, in good agreement with the world average value.Comment: 9 pages, 5 figure
Status and Recent Results of the Acoustic Neutrino Detection Test System AMADEUS
The AMADEUS system is an integral part of the ANTARES neutrino telescope in
the Mediterranean Sea. The project aims at the investigation of techniques for
acoustic neutrino detection in the deep sea. Installed at a depth of more than
2000m, the acoustic sensors of AMADEUS are based on piezo-ceramics elements for
the broad-band recording of signals with frequencies ranging up to 125kHz.
AMADEUS was completed in May 2008 and comprises six "acoustic clusters", each
one holding six acoustic sensors that are arranged at distances of roughly 1m
from each other. The clusters are installed with inter-spacings ranging from
15m to 340m. Acoustic data are continuously acquired and processed at a
computer cluster where online filter algorithms are applied to select a
high-purity sample of neutrino-like signals. 1.6 TB of data were recorded in
2008 and 3.2 TB in 2009. In order to assess the background of neutrino-like
signals in the deep sea, the characteristics of ambient noise and transient
signals have been investigated. In this article, the AMADEUS system will be
described and recent results will be presented.Comment: 7 pages, 8 figures. Proceedings of ARENA 2010, the 4th International
Workshop on Acoustic and Radio EeV Neutrino Detection Activitie
- …
