5,526 research outputs found
Competing charge density waves and temperature-dependent nesting in 2H-TaSe2
Multiple charge density wave (CDW) phases in 2H-TaSe2 are investigated by
high-resolution synchrotron x-ray diffraction. In a narrow temperature range
immediately above the commensurate CDW transition, we observe a multi-q
superstructure with coexisting commensurate and incommensurate order
parameters, clearly distinct from the fully incommensurate state at higher
temperatures. This multi-q ordered phase, characterized by a temperature
hysteresis, is found both during warming and cooling, in contrast to previous
reports. In the normal state, the incommensurate superstructure reflection
gives way to a broad diffuse peak that persists nearly up to room temperature.
Its position provides a direct and accurate estimate of the Fermi surface
nesting vector, which evolves non-monotonically and approaches the commensurate
position as the temperature is increased. This behavior agrees with our recent
observations of the temperature-dependent Fermi surface in the same compound
[Phys. Rev. B 79, 125112 (2009)]
Ultrafast photodoping and effective Fermi-Dirac distribution of the Dirac particles in Bi2Se3
We exploit time- and angle- resolved photoemission spectroscopy to determine
the evolution of the out-of-equilibrium electronic structure of the topological
insulator Bi2Se. The response of the Fermi-Dirac distribution to ultrashort IR
laser pulses has been studied by modelling the dynamics of the hot electrons
after optical excitation. We disentangle a large increase of the effective
temperature T* from a shift of the chemical potential mu*, which is consequence
of the ultrafast photodoping of the conduction band. The relaxation dynamics of
T* and mu* are k-independent and these two quantities uniquely define the
evolution of the excited charge population. We observe that the energy
dependence of the non-equilibrium charge population is solely determined by the
analytical form of the effective Fermi-Dirac distribution.Comment: 5 Pages, 3 Figure
Atomic and Electronic Structure of a Rashba - Junction at the BiTeI Surface
The non-centrosymmetric semiconductor BiTeI exhibits two distinct surface
terminations that support spin-split Rashba surface states. Their ambipolarity
can be exploited for creating spin-polarized - junctions at the
boundaries between domains with different surface terminations. We use scanning
tunneling microscopy/spectroscopy (STM/STS) to locate such junctions and
investigate their atomic and electronic properties. The Te- and I-terminated
surfaces are identified owing to their distinct chemical reactivity, and an
apparent height mismatch of electronic origin. The Rashba surface states are
revealed in the STS spectra by the onset of a van Hove singularity at the band
edge. Eventually, an electronic depletion is found on interfacial Te atoms,
consistent with the formation of a space charge area in typical -
junctions.Comment: 5 pages, 4 figure
Ultrafast Optical Control of the Electronic Properties of
We report on the temperature dependence of the electronic
properties, studied at equilibrium and out of equilibrium, by means of time and
angle resolved photoelectron spectroscopy. Our results unveil the dependence of
the electronic band structure across the Fermi energy on the sample
temperature. This finding is regarded as the dominant mechanism responsible for
the anomalous resistivity observed at T* 160 K along with the change of
the charge carrier character from holelike to electronlike. Having addressed
these long-lasting questions, we prove the possibility to control, at the
ultrashort time scale, both the binding energy and the quasiparticle lifetime
of the valence band. These experimental evidences pave the way for optically
controlling the thermoelectric and magnetoelectric transport properties of
Establishing the fundamental magnetic interactions in the chiral skyrmionic Mott insulator Cu2OSeO3 by terahertz electron spin resonance
The recent discovery of skyrmions in CuOSeO has established a new
platform to create and manipulate skyrmionic spin textures. We use high-field
electron spin resonance (ESR) spectroscopy combining a terahertz free electron
laser and pulsed magnetic fields up to 64 T to probe and quantify its
microscopic spin-spin interactions. Besides providing direct access to the
long-wavelength Goldstone mode, this technique probes also the high-energy part
of the excitation spectrum which is inaccessible by standard low-frequency ESR.
Fitting the behavior of the observed modes in magnetic field to a theoretical
framework establishes experimentally that the fundamental magnetic building
blocks of this skyrmionic magnet are rigid, highly entangled and weakly coupled
tetrahedra.Comment: 5 pages, 3 Figure
Giant ambipolar Rashba effect in a semiconductor: BiTeI
We observe a giant spin-orbit splitting in bulk and surface states of the
non-centrosymmetric semiconductor BiTeI. We show that the Fermi level can be
placed in the valence or in the conduction band by controlling the surface
termination. In both cases it intersects spin-polarized bands, in the
corresponding surface depletion and accumulation layers. The momentum splitting
of these bands is not affected by adsorbate-induced changes in the surface
potential. These findings demonstrate that two properties crucial for enabling
semiconductor-based spin electronics -- a large, robust spin splitting and
ambipolar conduction -- are present in this material.Comment: 4 pages, 3 figure
Ballistic versus diffusive magnetoresistance of a magnetic point contact
The quasiclassical theory of a nanosize point contacts (PC) between two
ferromagnets is developed. The maximum available magnetoresistance values in PC
are calculated for ballistic versus diffusive transport through the area of a
contact. In the ballistic regime the magnetoresistance in excess of few
hundreds percents is obtained for the iron-group ferromagnets. The necessary
conditions for realization of so large magnetoresistance in PC, and the
experimental results by Garcia et al are discussedComment: 4 pages, TEX, 1 Figur
The momentum and photon energy dependence of the circular dichroic photoemission in the bulk Rashba semiconductors BiTeX (X = I, Br, Cl)
Bulk Rashba systems BiTeX (X = I, Br, Cl) are emerging as important
candidates for developing spintronics devices, because of the coexistence of
spin-split bulk and surface states, along with the ambipolar character of the
surface charge carriers. The need of studying the spin texture of strongly
spin-orbit coupled materials has recently promoted circular dichroic Angular
Resolved Photoelectron Spectroscopy (cd-ARPES) as an indirect tool to measure
the spin and the angular degrees of freedom. Here we report a detailed photon
energy dependent study of the cd-ARPES spectra in BiTeX (X = I, Br and Cl). Our
work reveals a large variation of the magnitude and sign of the dichroism.
Interestingly, we find that the dichroic signal modulates differently for the
three compounds and for the different spin-split states. These findings show a
momentum and photon energy dependence for the cd-ARPES signals in the bulk
Rashba semiconductor BiTeX (X = I, Br, Cl). Finally, the outcome of our
experiment indicates the important relation between the modulation of the
dichroism and the phase differences between the wave-functions involved in the
photoemission process. This phase difference can be due to initial or final
state effects. In the former case the phase difference results in possible
interference effects among the photo-electrons emitted from different atomic
layers and characterized by entangled spin-orbital polarized bands. In the
latter case the phase difference results from the relative phases of the
expansion of the final state in different outgoing partial waves.Comment: 6 pages, 4 figure
Momentum resolved spin dynamics of bulk and surface excited states in the topological insulator
The prospective of optically inducing a spin polarized current for spintronic
devices has generated a vast interest in the out-of-equilibrium electronic and
spin structure of topological insulators (TIs). In this Letter we prove that
only by measuring the spin intensity signal over several order of magnitude in
spin, time and angle resolved photoemission spectroscopy (STAR-PES) experiments
is it possible to comprehensively describe the optically excited electronic
states in TIs materials. The experiments performed on
reveal the existence of a Surface-Resonance-State in the 2nd bulk band gap
interpreted on the basis of fully relativistic ab-initio spin resolved
photoemission calculations. Remarkably, the spin dependent relaxation of the
hot carriers is well reproduced by a spin dynamics model considering two
non-interacting electronic systems, derived from the excited surface and bulk
states, with different electronic temperatures.Comment: 5 pages and 4 figure
Hadronic production and the Gottfried Sum Rule
The difference in production rate between and at hadron colliders
is very sensitive to the the difference between up- and down-quark
distributions in the proton. This sensitivity allows for a variety of useful
measurements. We consider the difference in the sea
distributions and the difference in the
polarized parton distribution functions. In both cases we construct an
asymmetry to reduce systematic uncertainties. Although we discuss measurements
at the Tevatron and future hadron colliders, we find that the Brookhaven
Relativistic Heavy Ion Collider (RHIC) is the most appropriate hadron collider
for these measurements.Comment: 19 pages (20 figures available from the authors), MAD/PH/74
- …
