341 research outputs found

    Constraints on the IR behaviour of gluon and ghost propagator from Ward-Slavnov-Taylor identities

    Get PDF
    We consider the constraints of the Slavnov-Taylor identity of the IR behaviour of gluon and ghost propagators and their compatibility with solutions of the ghost Dyson-Schwinger equation and with the lattice picture.Comment: 5 pages, 2 figure

    Infrared Features of the Landau Gauge QCD

    Full text link
    The infrared features of Landau gauge QCD are studied by the lattice simulation of β=6.0,164,244,324\beta=6.0, 16^4, 24^4, 32^4 and β=6.4,324,484\beta=6.4, 32^4, 48^4. We adopt two definitions of the gauge field; 1) UU-linear 2) logU\log U and measured the gluon propagator and ghost propagator. Infrared singularity of the gluon propagator is less than that of tree level result but the gluon propagator at 0 momentum remains finite. The infrared singularity of ghost propagator is stronger than the tree level. The QCD running coupling measured by using the gluon propagator and the ghost propagator has a maximum αs(p)1\alpha_s(p)\simeq 1 at around p=0.5GeVp=0.5GeV and decreases as pp approaches 0. The data are analyzed in use of formula of the principle of minimal sensitivity(PMS), the effective charge method and the contour-improved perturbation method, which suggest necessity of the resummation of perturbation series in the infrared region together with existence of the infrared fixed point. Kugo-Ojima parameter saturates at about -0.8 in contrast to the theoretically expected value -1.Comment: RevTex4, 9 pages, 10 eps figures, Typos corrected. To be published in Phys. Rev. D(2004

    On the leading OPE corrections to the ghost-gluon vertex and the Taylor theorem

    Get PDF
    This brief note is devoted to a study of genuine non-perturbative corrections to the Landau gauge ghost-gluon vertex in terms of the non-vanishing dimension-two gluon condensate. We pay special attention to the kinematical limit which the bare vertex takes for its tree-level expression at any perturbative order, according to the well-known Taylor theorem. Based on our OPE analysis, we also present a simple model for the vertex, in acceptable agreement with lattice data.Comment: Final version published in JHE

    The Gluon Propagator without lattice Gribov copies

    Get PDF
    We study the gluon propagator in quenched lattice QCD using the Laplacian gauge which is free of lattice Gribov copies. We compare our results with those obtained in the Landau gauge on the lattice, as well as with various approximate solutions of the Dyson Schwinger equations. We find a finite value (445MeV)2\sim (445 \rm{MeV})^{-2} for the renormalized zero-momentum propagator (taking our renormalization point at 1.943 GeV), and a pole mass 640±140\sim 640 \pm 140 MeV.Comment: Discussion of the renormalized gluon propagator and of the Laplacian gauge fixing procedure extended. Version to appear in Phys. Rev. D. 15 pages, 8 figure

    From Nonspecific DNA–Protein Encounter Complexes to the Prediction of DNA–Protein Interactions

    Get PDF
    ©2009 Gao, Skolnick. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.doi:10.1371/journal.pcbi.1000341DNA–protein interactions are involved in many essential biological activities. Because there is no simple mapping code between DNA base pairs and protein amino acids, the prediction of DNA–protein interactions is a challenging problem. Here, we present a novel computational approach for predicting DNA-binding protein residues and DNA–protein interaction modes without knowing its specific DNA target sequence. Given the structure of a DNA-binding protein, the method first generates an ensemble of complex structures obtained by rigid-body docking with a nonspecific canonical B-DNA. Representative models are subsequently selected through clustering and ranking by their DNA–protein interfacial energy. Analysis of these encounter complex models suggests that the recognition sites for specific DNA binding are usually favorable interaction sites for the nonspecific DNA probe and that nonspecific DNA–protein interaction modes exhibit some similarity to specific DNA–protein binding modes. Although the method requires as input the knowledge that the protein binds DNA, in benchmark tests, it achieves better performance in identifying DNA-binding sites than three previously established methods, which are based on sophisticated machine-learning techniques. We further apply our method to protein structures predicted through modeling and demonstrate that our method performs satisfactorily on protein models whose root-mean-square Ca deviation from native is up to 5 Å from their native structures. This study provides valuable structural insights into how a specific DNA-binding protein interacts with a nonspecific DNA sequence. The similarity between the specific DNA–protein interaction mode and nonspecific interaction modes may reflect an important sampling step in search of its specific DNA targets by a DNA-binding protein

    Renormalizing a BRST-invariant composite operator of mass dimension 2 in Yang-Mills theory

    Get PDF
    We discuss the renormalization of a BRST and anti-BRST invariant composite operator of mass dimension 2 in Yang-Mills theory with the general BRST and anti-BRST invariant gauge fixing term of the Lorentz type. The interest of this study stems from a recent claim that the non-vanishing vacuum condensate of the composite operator in question can be an origin of mass gap and quark confinement in any manifestly covariant gauge, as proposed by one of the authors. First, we obtain the renormalization group flow of the Yang-Mills theory. Next, we show the multiplicative renormalizability of the composite operator and that the BRST and anti-BRST invariance of the bare composite operator is preserved under the renormalization. Third, we perform the operator product expansion of the gluon and ghost propagators and obtain the Wilson coefficient corresponding to the vacuum condensate of mass dimension 2. Finally, we discuss the connection of this work with the previous works and argue the physical implications of the obtained results.Comment: 49 pages, 35 eps-files, A number of typographic errors are corrected. A paragraph is added in the beginning of section 5.3. Two equations (7.1) and (7.2) are added. A version to be published in Phys. Rev.

    Clinical Manifestations and Case Management of Ebola Haemorrhagic Fever caused by a newly identified virus strain, Bundibugyo, Uganda, 2007-2008

    Get PDF
    A confirmed Ebola haemorrhagic fever (EHF) outbreak in Bundibugyo, Uganda, November 2007-February 2008, was caused by a putative new species (Bundibugyo ebolavirus). It included 93 putative cases, 56 laboratory-confirmed cases, and 37 deaths (CFR = 25%). Study objectives are to describe clinical manifestations and case management for 26 hospitalised laboratory-confirmed EHF patients. Clinical findings are congruous with previously reported EHF infections. The most frequently experienced symptoms were non-bloody diarrhoea (81%), severe headache (81%), and asthenia (77%). Seven patients reported or were observed with haemorrhagic symptoms, six of whom died. Ebola care remains difficult due to the resource-poor setting of outbreaks and the infection-control procedures required. However, quality data collection is essential to evaluate case definitions and therapeutic interventions, and needs improvement in future epidemics. Organizations usually involved in EHF case management have a particular responsibility in this respect

    The Infrared Behaviour of the Pure Yang-Mills Green Functions

    Full text link
    We review the infrared properties of the pure Yang-Mills correlators and discuss recent results concerning the two classes of low-momentum solutions for them reported in literature; i.e. decoupling and scaling solutions. We will mainly focuss on the Landau gauge and pay special attention to the results inferred from the analysis of the Dyson-Schwinger equations of the theory and from "{\it quenched}" lattice QCD. The results obtained from properly interplaying both approaches are strongly emphasized.Comment: Final version to be published in FBS (54 pgs., 11 figs., 4 tabs
    corecore