123 research outputs found

    The fine-tuning price of the early LHC

    Full text link
    LHC already probed and excluded half of the parameter space of the Constrained Minimal Supersymmetric Standard Model allowed by previous experiments. Only about 0.3% of the CMSSM parameter space survives. This fraction rises to about 0.9% if the bound on the Higgs mass can be circumvented.Comment: 7 pages. v3: updated with new bounds from ATLAS and CMS at 1.1/fb presented at the EPS-HEP-2011 conferenc

    Beyond MFV in family symmetry theories of fermion masses

    Get PDF
    Minimal Flavour Violation (MFV) postulates that the only source of flavour changing neutral currents and CP violation, as in the Standard Model, is the CKM matrix. However it does not address the origin of fermion masses and mixing and models that do usually have a structure that goes well beyond the MFV framework. In this paper we compare the MFV predictions with those obtained in models based on spontaneously broken (horizontal) family symmetries, both Abelian and non-Abelian. The generic suppression of flavour changing processes in these models turns out to be weaker than in the MFV hypothesis. Despite this, in the supersymmetric case, the suppression may still be consistent with a solution to the hierarchy problem, with masses of superpartners below 1 TeV. A comparison of FCNC and CP violation in processes involving a variety of different family quantum numbers should be able to distinguish between various family symmetry models and models satisfying the MFV hypothesis.Comment: 34 pages, no figure

    On the AdS/CFT Dual of Deconstruction

    Get PDF
    We consider a class of non-supersymmetric gauge theories obtained by orbifolding the N=4 super-Yang-Mills theories. We focus on the resulting quiver theories in their deconstructed phase, both at small and large coupling, where a fifth dimension opens up. In particular we investigate the r\^ole played by this extra dimension when evaluating the rectangular Wilson loops encoding the interaction potential between quarks located at different points in the orbifold. The large coupling potential of the deconstructed quiver theory is determined using the AdS/CFT correspondence and analysing the corresponding minimal surface solution for the dual gravitational metric. At small coupling, the potential between quarks decreases with their angular distance while at strong coupling we find a linear dependence at large distance along the (deconstructed) fifth dimension.Comment: 19 pages, 3 figure

    Effects of Supersymmetric Threshold Corrections on High-Scale Flavor Textures

    Get PDF
    Integration of superpartners out of the spectrum induces potentially large contributions to Yukawa couplings. These corrections, the supersymmetric threshold corrections, therefore influence the CKM matrix prediction in a non-trivial way. We study effects of threshold corrections on high-scale flavor structures specified at the gauge coupling unification scale in supersymmetry. In our analysis, we first consider high-scale Yukawa textures which qualify phenomenologically viable at tree level, and find that they get completely disqualified after incorporating the threshold corrections. Next, we consider Yukawa couplings, such as those with five texture zeroes, which are incapable of explaining flavor-changing proceses. Incorporation of threshold corrections, however, makes them phenomenologically viable textures. Therefore, supersymmetric threshold corrections are found to leave observable impact on Yukawa couplings of quarks, and any confrontation of high-scale textures with experiments at the weak scale must take into account such corrections.Comment: 25 pages, submitted to JHE

    Naturalness and Fine Tuning in the NMSSM: Implications of Early LHC Results

    Get PDF
    We study the fine tuning in the parameter space of the semi-constrained NMSSM, where most soft Susy breaking parameters are universal at the GUT scale. We discuss the dependence of the fine tuning on the soft Susy breaking parameters M_1/2 and m0, and on the Higgs masses in NMSSM specific scenarios involving large singlet-doublet Higgs mixing or dominant Higgs-to-Higgs decays. Whereas these latter scenarios allow a priori for considerably less fine tuning than the constrained MSSM, the early LHC results rule out a large part of the parameter space of the semi-constrained NMSSM corresponding to low values of the fine tuning.Comment: 19 pages, 10 figures, bounds from Susy searches with ~1/fb include

    Tuning supersymmetric models at the LHC: A comparative analysis at two-loop level

    Get PDF
    We provide a comparative study of the fine tuning amount (Delta) at the two-loop leading log level in supersymmetric models commonly used in SUSY searches at the LHC. These are the constrained MSSM (CMSSM), non-universal Higgs masses models (NUHM1, NUHM2), non-universal gaugino masses model (NUGM) and GUT related gaugino masses models (NUGMd). Two definitions of the fine tuning are used, the first (Delta_{max}) measures maximal fine-tuning wrt individual parameters while the second (Delta_q) adds their contribution in "quadrature". As a direct result of two theoretical constraints (the EW minimum conditions), fine tuning (Delta_q) emerges as a suppressing factor (effective prior) of the averaged likelihood (under the priors), under the integral of the global probability of measuring the data (Bayesian evidence p(D)). For each model, there is little difference between Delta_q, Delta_{max} in the region allowed by the data, with similar behaviour as functions of the Higgs, gluino, stop mass or SUSY scale (m_{susy}=(m_{\tilde t_1} m_{\tilde t_2})^{1/2}) or dark matter and g-2 constraints. The analysis has the advantage that by replacing any of these mass scales or constraints by their latest bounds one easily infers for each model the value of Delta_q, Delta_{max} or vice versa. For all models, minimal fine tuning is achieved for M_{higgs} near 115 GeV with a Delta_q\approx Delta_{max}\approx 10 to 100 depending on the model, and in the CMSSM this is actually a global minimum. Due to a strong (\approx exponential) dependence of Delta on M_{higgs}, for a Higgs mass near 125 GeV, the above values of Delta_q\approx Delta_{max} increase to between 500 and 1000. Possible corrections to these values are briefly discussed.Comment: 23 pages, 46 figures; references added; some clarifications (section 2

    Complete resummation of chirally-enhanced loop-effects in the MSSM with non-minimal sources of flavor-violation

    Get PDF
    In this article we present the complete resummation of the leading chirally-enhanced corrections stemming from gluino-squark, chargino-sfermion and neutralino-sfermion loops in the MSSM with non-minimal sources of flavor-violation. We compute the finite renormalization of fermion masses and the CKM matrix induced by chirality-flipping self-energies. In the decoupling limit Msusy>>v, which is an excellent approximation to the full theory, we give analytic results for the effective gaugino(higgsino)-fermion-sfermion and the Higgs-fermion-fermion vertices. Using these vertices as effective Feynman rules, all leading chirally-enhanced corrections can consistently be included into perturbative calculations of Feynman amplitudes. We also give a generalized parametrization for the bare CKM matrix which extends the classic Wolfenstein parametrization to the case of complex parameters lambda and A.Comment: 31 pages, 3 figures; typos correcte

    Fine Tuning in General Gauge Mediation

    Get PDF
    We study the fine-tuning problem in the context of general gauge mediation. Numerical analyses toward for relaxing fine-tuning are presented. We analyse the problem in typical three cases of the messenger scale, that is, GUT (2×10162\times10^{16} GeV), intermediate (101010^{10} GeV), and relatively low energy (10610^6 GeV) scales. In each messenger scale, the parameter space reducing the degree of tuning as around 10% is found. Certain ratios among gluino mass, wino mass and soft scalar masses are favorable. It is shown that the favorable region becomes narrow as the messenger scale becomes lower, and tachyonic initial conditions of stop masses at the messenger scale are favored to relax the fine-tuning problem for the relatively low energy messenger scale. Our spectra would also be important from the viewpoint of the μB\mu-B problem.Comment: 22 pages, 16 figures, comment adde

    The Messenger Sector of SUSY Flavour Models and Radiative Breaking of Flavour Universality

    Get PDF
    The flavour messenger sectors and their impact on the soft SUSY breaking terms are investigated in SUSY flavour models. In the case when the flavour scale M is below the SUSY breaking mediation scale M_S, the universality of soft terms, even if assumed at M_S, is radiatively broken. We estimate this effect in a broad class of models. In the CKM basis that effect gives flavour off-diagonal soft masses comparable to the tree-level estimate based on the flavour symmetry.Comment: 24 pages, 3 figures. v3: minor changes in the text, typos corrected, version accepted for publication in JHE

    Yukawa unification in SO(10) with light sparticle spectrum

    Get PDF
    We investigate supersymmetric SO(10) GUT model with \mu<0. The requirements of top-bottom-tau Yukawa unification, correct radiative electroweak symmetry breaking and agreement with the present experimental data may be met when the soft masses of scalars and gauginos are non-universal. We show how appropriate non-universalities can easily be obtained in the SO(10) GUT broken to the Standard Model. We discuss how values of BR(b-->s \gamma) and (g-2)_\mu simultaneously in a good agreement with the experimental data can be achieved in SO(10) model with \mu<0. In the region of the parameter space preferred by our analysis there are two main mechanisms leading to the LSP relic abundance consistent with the WMAP results. One is the co-annihilation with the stau and the second is the resonant annihilation via exchange of the Z boson or the light Higgs scalar. A very interesting feature of SO(10) models with negative \mu is that they predict relatively light sparticle spectra. Even the heaviest superpartners may easily have masses below 1.5 TeV in contrast to multi-TeV particles typical for models with positive \mu.Comment: 23 pages, 5 figure
    corecore