174 research outputs found

    Maternal mental health predicts risk of developmental problems at 3 years of age: follow up of a community based trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Undetected and untreated developmental problems can have a significant economic and social impact on society. Intervention to ameliorate potential developmental problems requires early identification of children at risk of future learning and behaviour difficulties. The objective of this study was to estimate the prevalence of risk for developmental problems among preschool children born to medically low risk women and identify factors that influence outcomes.</p> <p>Methods</p> <p>Mothers who had participated in a prenatal trial were followed up three years post partum to answer a telephone questionnaire. Questions were related to child health and development, child care, medical care, mother's lifestyle, well-being, and parenting style. The main outcome measure was risk for developmental problems using the Parents' Evaluation of Developmental Status (PEDS).</p> <p>Results</p> <p>Of 791 children, 11% were screened by the PEDS to be at high risk for developmental problems at age three. Of these, 43% had previously been referred for assessment. Children most likely to have been referred were those born preterm. Risk factors for delay included: male gender, history of ear infections, a low income environment, and a mother with poor emotional health and a history of abuse. A child with these risk factors was predicted to have a 53% chance of screening at high risk for developmental problems. This predicted probability was reduced to 19% if the child had a mother with good emotional health and no history of abuse.</p> <p>Conclusion</p> <p>Over 10% of children were identified as high risk for developmental problems by the screening, and more than half of those had not received a specialist referral. Risk factors for problems included prenatal and perinatal maternal and child factors. Assessment of maternal health and effective screening of child development may increase detection of children at high risk who would benefit from early intervention.</p> <p>Trial registration</p> <p>Current Controlled Trials ISRCTN64070727</p

    Specialized Learning in Antlions (Neuroptera: Myrmeleontidae), Pit-Digging Predators, Shortens Vulnerable Larval Stage

    Get PDF
    Unique in the insect world for their extremely sedentary predatory behavior, pit-dwelling larval antlions dig pits, and then sit at the bottom and wait, sometimes for months, for prey to fall inside. This sedentary predation strategy, combined with their seemingly innate ability to detect approaching prey, make antlions unlikely candidates for learning. That is, although scientists have demonstrated that many species of insects possess the capacity to learn, each of these species, which together represent multiple families from every major insect order, utilizes this ability as a means of navigating the environment, using learned cues to guide an active search for food and hosts, or to avoid noxious events. Nonetheless, we demonstrate not only that sedentary antlions can learn, but also, more importantly, that learning provides an important fitness benefit, namely decreasing the time to pupate, a benefit not yet demonstrated in any other species. Compared to a control group in which an environmental cue was presented randomly vis-à-vis daily prey arrival, antlions given the opportunity to associate the cue with prey were able to make more efficient use of prey and pupate significantly sooner, thus shortening their long, highly vulnerable larval stage. Whereas “median survival time,” the point at which half of the animals in each group had pupated, was 46 days for antlions receiving the Learning treatment, that point never was reached in antlions receiving the Random treatment, even by the end of the experiment on Day 70. In addition, we demonstrate a novel manifestation of antlions' learned response to cues predicting prey arrival, behavior that does not match the typical “learning curve” but which is well-adapted to their sedentary predation strategy. Finally, we suggest that what has long appeared to be instinctive predatory behavior is likely to be highly modified and shaped by learning

    Motor control or graded activity exercises for chronic low back pain? A randomised controlled trial

    Get PDF
    Background: Chronic low back pain remains a major health problem in Australia and around the world. Unfortunately the majority of treatments for this condition produce small effects because not all patients respond to each treatment. It appears that only 25-50% of patients respond to exercise. The two most popular types of exercise for low back pain are graded activity and motor control exercises. At present however, there are no guidelines to help clinicians select the best treatment for a patient. As a result, time and money are wasted on treatments which ultimately fail to help the patient

    A Database of Wing Diversity in the Hawaiian Drosophila

    Get PDF
    Background. Within genus Drosophila, the endemic Hawaiian species offer some of the most dramatic examples of morphological and behavioral evolution. The advent of the Drosophila grimshawi genome sequence permits genes of interest to be readily cloned from any of the hundreds of species of Hawaiian Drosophila, offering a powerful comparative approach to defining molecular mechanisms of species evolution. A key step in this process is to survey the Hawaiian flies for characters whose variation can be associated with specific candidate genes. The wings provide an attractive target for such studies: Wings are essentially two dimensional, and genes controlling wing shape, vein specification, pigment production, and pigment pattern evolution have all been identified in Drosophila. Methodology/Principal Findings. We present a photographic database of over 180 mounted, adult wings from 73 species of Hawaiian Drosophila. The image collection, available at FlyBase.org, includes 53 of the 112 known species of picture wing\u27\u27 Drosophila, and several species from each of the other major Hawaiian groups, including the modified mouthparts, modified tarsus, antopocerus, and haleakalae (fungus feeder) groups. Direct image comparisons show that major wing shape changes can occur even between closely related species, and that pigment pattern elements can vary independently of each other. Among the 30 species closest to grimshawi, diverse visual effects are achieved by altering a basic pattern of seven wing spots. Finally, we document major pattern variations within species, which appear to result from reduced diffusion of pigment precursors through the wing blade. Conclusions/Significance. The database highlights the striking variation in size, shape, venation, and pigmentation in Hawaiian Drosophila, despite their generally low levels of DNA sequence divergence. In several independent lineages, highly complex patterns are derived from simple ones. These lineages offer a promising model system to study the evolution of complexity

    Level of Arterial Ligation in Rectal Cancer Surgery: Low Tie Preferred over High Tie. A Review

    Get PDF
    Consensus does not exist on the level of arterial ligation in rectal cancer surgery. From oncologic considerations, many surgeons apply high tie arterial ligation (level of inferior mesenteric artery). Other strategies include ligation at the level of the superior rectal artery, just caudally to the origin of the left colic artery (low tie), and ligation at a level without any intraoperative definition of the inferior mesenteric or superior rectal arteries

    We're in this Together: Sensation of the Host Cell Environment by Endosymbiotic Bacteria

    Get PDF
    Bacteria inhabit diverse environments, including the inside of eukaryotic cells. While a bacterial invader may initially act as a parasite or pathogen, a subsequent mutualistic relationship can emerge in which the endosymbiotic bacteria and their host share metabolites. While the environment of the host cell provides improved stability when compared to an extracellular environment, the endosymbiont population must still cope with changing conditions, including variable nutrient concentrations, the host cell cycle, host developmental programs, and host genetic variation. Furthermore, the eukaryotic host can deploy mechanisms actively preventing a bacterial return to a pathogenic state. Many endosymbionts are likely to use two-component systems (TCSs) to sense their surroundings, and expanded genomic studies of endosymbionts should reveal how TCSs may promote bacterial integration with a host cell. We suggest that studying TCS maintenance or loss may be informative about the evolutionary pathway taken toward endosymbiosis, or even toward endosymbiont-to-organelle conversion.Peer reviewe
    corecore