501 research outputs found

    Do airway metallic stents for benign lesions confer too costly a benefit?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The use of self-expanding metallic stents (SEMAS) in the treatment benign airway obstruction is controversial.</p> <p>Methods</p> <p>To evaluate the safety and efficacy of SEMAS for this indication, we conducted a 10-year retrospective review at our tertiary medical centre.</p> <p>Results</p> <p>Using flexible bronchoscopy, 82 SEMAS (67% Ultraflex, 33% Wallstent) were placed in 35 patients with inoperable lesions, many with significant medical comorbidities (88%). 68% of stents were tracheal, and 83% of patients showed immediate symptomatic improvement. Reversible complications developed in 9% of patients within 24 hrs of stent placement. Late complications (>24 hrs) occurred in 77% of patients, of which 37% were clinically significant or required an interventional procedure. These were mainly due to stent migration (12.2%), fracture (19.5%), or obstructive granulomas (24.4%). The overall granuloma rate of 57% was higher at tracheal sites (59%) than bronchial ones (34%), but not significantly different between Ultraflex and Wallstents. Nevertheless, Wallstents were associated with higher rates of bleeding (5% vs. 30%, p = 0.005) and migration (7% vs. 26%, p = 0.026). Of 10 SEMAS removed using flexible bronchoscopy, only one was associated with incomplete removal of fractured stent wire. Median survival was 3.6 ± 2.7 years.</p> <p>Conclusion</p> <p>Ill patients with inoperable lesions may be considered for treatment with SEMAS.</p

    Static platelet adhesion, flow cytometry and serum TXB2 levels for monitoring platelet inhibiting treatment with ASA and clopidogrel in coronary artery disease: a randomised cross-over study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite the use of anti-platelet agents such as acetylsalicylic acid (ASA) and clopidogrel in coronary heart disease, some patients continue to suffer from atherothrombosis. This has stimulated development of platelet function assays to monitor treatment effects. However, it is still not recommended to change treatment based on results from platelet function assays. This study aimed to evaluate the capacity of a static platelet adhesion assay to detect platelet inhibiting effects of ASA and clopidogrel. The adhesion assay measures several aspects of platelet adhesion simultaneously, which increases the probability of finding conditions sensitive for anti-platelet treatment.</p> <p>Methods</p> <p>With a randomised cross-over design we evaluated the anti-platelet effects of ASA combined with clopidogrel as well as monotherapy with either drug alone in 29 patients with a recent acute coronary syndrome. Also, 29 matched healthy controls were included to evaluate intra-individual variability over time. Platelet function was measured by flow cytometry, serum thromboxane B<sub>2 </sub>(TXB<sub>2</sub>)-levels and by static platelet adhesion to different protein surfaces. The results were subjected to Principal Component Analysis followed by ANOVA, t-tests and linear regression analysis.</p> <p>Results</p> <p>The majority of platelet adhesion measures were reproducible in controls over time denoting that the assay can monitor platelet activity. Adenosine 5'-diphosphate (ADP)-induced platelet adhesion decreased significantly upon treatment with clopidogrel compared to ASA. Flow cytometric measurements showed the same pattern (r<sup>2 </sup>= 0.49). In opposite, TXB<sub>2</sub>-levels decreased with ASA compared to clopidogrel. Serum TXB<sub>2 </sub>and ADP-induced platelet activation could both be regarded as direct measures of the pharmacodynamic effects of ASA and clopidogrel respectively. Indirect pharmacodynamic measures such as adhesion to albumin induced by various soluble activators as well as SFLLRN-induced activation measured by flow cytometry were lower for clopidogrel compared to ASA. Furthermore, adhesion to collagen was lower for ASA and clopidogrel combined compared with either drug alone.</p> <p>Conclusion</p> <p>The indirect pharmacodynamic measures of the effects of ASA and clopidogrel might be used together with ADP-induced activation and serum TXB<sub>2 </sub>for evaluation of anti-platelet treatment. This should be further evaluated in future clinical studies where screening opportunities with the adhesion assay will be optimised towards increased sensitivity to anti-platelet treatment.</p

    Targeting tumorigenesis: development and use of mTOR inhibitors in cancer therapy

    Get PDF
    The mammalian target of rapamycin (mTOR) is an intracellular serine/threonine protein kinase positioned at a central point in a variety of cellular signaling cascades. The established involvement of mTOR activity in the cellular processes that contribute to the development and progression of cancer has identified mTOR as a major link in tumorigenesis. Consequently, inhibitors of mTOR, including temsirolimus, everolimus, and ridaforolimus (formerly deforolimus) have been developed and assessed for their safety and efficacy in patients with cancer. Temsirolimus is an intravenously administered agent approved by the US Food and Drug Administration (FDA) and the European Medicines Agency (EMEA) for the treatment of advanced renal cell carcinoma (RCC). Everolimus is an oral agent that has recently obtained US FDA and EMEA approval for the treatment of advanced RCC after failure of treatment with sunitinib or sorafenib. Ridaforolimus is not yet approved for any indication. The use of mTOR inhibitors, either alone or in combination with other anticancer agents, has the potential to provide anticancer activity in numerous tumor types. Cancer types in which these agents are under evaluation include neuroendocrine tumors, breast cancer, leukemia, lymphoma, hepatocellular carcinoma, gastric cancer, pancreatic cancer, sarcoma, endometrial cancer, and non-small-cell lung cancer. The results of ongoing clinical trials with mTOR inhibitors, as single agents and in combination regimens, will better define their activity in cancer

    Performance and calibration of quark/gluon-jet taggers using 140 fb⁻¹ of pp collisions at √s=13 TeV with the ATLAS detector

    Get PDF
    The identification of jets originating from quarks and gluons, often referred to as quark/gluon tagging, plays an important role in various analyses performed at the Large Hadron Collider, as Standard Model measurements and searches for new particles decaying to quarks often rely on suppressing a large gluon-induced background. This paper describes the measurement of the efficiencies of quark/gluon taggers developed within the ATLAS Collaboration, using √s=13 TeV proton–proton collision data with an integrated luminosity of 140 fb-1 collected by the ATLAS experiment. Two taggers with high performances in rejecting jets from gluon over jets from quarks are studied: one tagger is based on requirements on the number of inner-detector tracks associated with the jet, and the other combines several jet substructure observables using a boosted decision tree. A method is established to determine the quark/gluon fraction in data, by using quark/gluon-enriched subsamples defined by the jet pseudorapidity. Differences in tagging efficiency between data and simulation are provided for jets with transverse momentum between 500 GeV and 2 TeV and for multiple tagger working points

    Combination of searches for heavy spin-1 resonances using 139 fb−1 of proton-proton collision data at √s = 13 TeV with the ATLAS detector

    Get PDF
    A combination of searches for new heavy spin-1 resonances decaying into diferent pairings of W, Z, or Higgs bosons, as well as directly into leptons or quarks, is presented. The data sample used corresponds to 139 fb−1 of proton-proton collisions at √ s = 13 TeV collected during 2015–2018 with the ATLAS detector at the CERN Large Hadron Collider. Analyses selecting quark pairs (qq, bb, tt¯, and tb) or third-generation leptons (τν and τ τ ) are included in this kind of combination for the frst time. A simplifed model predicting a spin-1 heavy vector-boson triplet is used. Cross-section limits are set at the 95% confdence level and are compared with predictions for the benchmark model. These limits are also expressed in terms of constraints on couplings of the heavy vector-boson triplet to quarks, leptons, and the Higgs boson. The complementarity of the various analyses increases the sensitivity to new physics, and the resulting constraints are stronger than those from any individual analysis considered. The data exclude a heavy vector-boson triplet with mass below 5.8 TeV in a weakly coupled scenario, below 4.4 TeV in a strongly coupled scenario, and up to 1.5 TeV in the case of production via vector-boson fusion

    Improving topological cluster reconstruction using calorimeter cell timing in ATLAS

    Get PDF
    Clusters of topologically connected calorimeter cells around cells with large absolute signal-to-noise ratio (topo-clusters) are the basis for calorimeter signal reconstruction in the ATLAS experiment. Topological cell clustering has proven performant in LHC Runs 1 and 2. It is, however, susceptible to out-of-time pile-up of signals from soft collisions outside the 25 ns proton-bunch-crossing window associated with the event’s hard collision. To reduce this effect, a calorimeter-cell timing criterion was added to the signal-to-noise ratio requirement in the clustering algorithm. Multiple versions of this criterion were tested by reconstructing hadronic signals in simulated events and Run 2 ATLAS data. The preferred version is found to reduce the out-of-time pile-up jet multiplicity by ∼50% for jet pT ∼ 20 GeV and by ∼80% for jet pT 50 GeV, while not disrupting the reconstruction of hadronic signals of interest, and improving the jet energy resolution by up to 5% for 20 < pT < 30 GeV. Pile-up is also suppressed for other physics objects based on topo-clusters (electrons, photons, τ -leptons), reducing the overall event size on disk by about 6% in early Run 3 pileup conditions. Offline reconstruction for Run 3 includes the timing requirement

    Software Performance of the ATLAS Track Reconstruction for LHC Run 3

    Get PDF
    Charged particle reconstruction in the presence of many simultaneous proton–proton (pp) collisions in the LHC is a challenging task for the ATLAS experiment’s reconstruction software due to the combinatorial complexity. This paper describes the major changes made to adapt the software to reconstruct high-activity collisions with an average of 50 or more simultaneous pp interactions per bunch crossing (pileup) promptly using the available computing resources. The performance of the key components of the track reconstruction chain and its dependence on pile-up are evaluated, and the improvement achieved compared to the previous software version is quantified. For events with an average of 60 pp collisions per bunch crossing, the updated track reconstruction is twice as fast as the previous version, without significant reduction in reconstruction efficiency and while reducing the rate of combinatorial fake tracks by more than a factor two

    Azimuthal Angle Correlations of Muons Produced via Heavy-Flavor Decays in 5.02 TeV Pb + Pb and pp Collisions with the ATLAS Detector

    Get PDF

    Determination of the Relative Sign of the Higgs Boson Couplings to W and Z Bosons Using WH Production via Vector-Boson Fusion with the ATLAS Detector

    Get PDF
    The associated production of Higgs and W bosons via vector-boson fusion is highly sensitive to the relative sign of the Higgs boson couplings to W and Z bosons. In this Letter, two searches for this process are presented, using 140 fb^{-1} of proton-proton collision data at sqrt[s]=13 TeV recorded by the ATLAS detector at the LHC. The first search targets scenarios with opposite-sign couplings of the W and Z bosons to the Higgs boson, while the second targets standard model-like scenarios with same-sign couplings. Both analyses consider Higgs boson decays into a pair of b quarks and W boson decays with an electron or muon. The data exclude the opposite-sign coupling hypothesis with a significance beyond 5σ, and the observed (expected) upper limit set on the cross section for vector-boson fusion WH production is 9.0 (8.7) times the standard model value at 95% confidence level

    Measurement of the Z boson invisible width at s=13 TeV with the ATLAS detector

    Get PDF
    A measurement of the invisible width of the Z boson using events with jets and missing transverse momentum is presented using 37 fb−1 of 13 TeV proton–proton data collected by the ATLAS detector in 2015 and 2016. The ratio of Z→inv to Z→ll events, where inv refers to non-detected particles and l is either an electron or a muon, is measured and corrected for detector effects. Events with at least one energetic central jet with pT≥110 GeV are selected for both the Z→inv and Z→ll final states to obtain a similar phase space in the ratio. The invisible width is measured to be 506±2(stat.)±12(syst.) MeV and is the single most precise recoil-based measurement. The result is in agreement with the most precise determination from LEP and the Standard Model prediction based on three neutrino generations
    corecore