6,560 research outputs found

    Field deployments of a self-contained subsea platform for acoustic monitoring of the environment around marine renewable energy structurea

    Get PDF
    The drive towards sustainable energy has seen rapid development of marine renewable energy devices, and current efforts are focusing on wave and tidal stream energy. The NERC/DEFRA collaboration FLOWBEC-4D (Flow, Water column & Benthic Ecology 4D) is addressing the lack of knowledge of the environmental and ecological effects of installing and operating large arrays of wave and tidal energy devices. The FLOWBEC sonar platform combines a number of instruments to record information at a range of physical and multi-trophic levels. Data are recorded at a resolution of several measurements per second, for durations of 2 weeks to capture an entire spring-neap tidal cycle. An upward-facing multifrequency Simrad EK60 echosounder (38, 120 and 200 kHz) is synchronized with an upward-facing Imagenex 837B Delta T multibeam sonar (120° × 20° beamwidth, 260 kHz) aligned with the tidal flow. An ADV is used for local current measurements and a fluorometer is used to measure chlorophyll (as a proxy for plankton) and turbidity. The platform is self-contained with no cables or anchors, facilitating rapid deployment and recovery in high-energy sites and flexibility in allowing baseline data to be gathered. Five 2-week deployments were completed in 2012 and 2013 at wave and tidal energy sites, both in the presence and absence of renewable energy structures. These surveys were conducted at the European Marine Energy Centre, Orkney, UK. Algorithms for noise removal, target detection and target tracking have been written using a combination of LabVIEW, MATLAB and Echoview. Target morphology, behavior and frequency response are used to aid target classification, with concurrent shore-based seabird observations used to ground truth the acoustic data. Using this information, the depth preference and interactions of birds, fish schools and marine mammals with renewable energy structures can be tracked. Seabird and mammal dive profiles, predator-prey interactions a- d the effect of hydrodynamic processes during foraging events throughout the water column can also be analyzed. These datasets offer insights into how fish, seabirds and marine mammals successfully forage within dynamic marine habitats and also whether individuals face collision risks with tidal stream turbines. Measurements from the subsea platform are complemented by 3D hydrodynamic model data and concurrent shore-based marine X-band radar. This range of concurrent fine-scale information across physical and trophic levels will improve our understanding of how the fine-scale physical influence of currents, waves and turbulence at tidal and wave energy sites affect the behavior of marine wildlife, and how tidal and wave energy devices might alter the behavior of such wildlife. Together, the results from these deployments increase our environmental understanding of the physical and ecological effects of installing and operating marine renewable energy devices. These results can be used to guide marine spatial planning, device design, licensing and operation, as individual devices are scaled up to arrays and new sites are considered. The combination of our current technology and analytical approach can help to de-risk the licensing process by providing a higher level of certainty about the behavior of a range of mobile marine species in high energy environments. It is likely that this approach will lead to greater mechanistic understanding of how and why mobile predators use these high energy areas for foraging. If a fuller understanding and quantification can be achieved at single demonstration scales, and these are found to be similar, then the predictive power of the outcomes might lead to a wider strategic approach to monitoring and possibly lead to a reduction in the level of monitoring required at each commercial site

    Necessary and sufficient conditions for existence of bound states in a central potential

    Full text link
    We obtain, using the Birman-Schwinger method, a series of necessary conditions for the existence of at least one bound state applicable to arbitrary central potentials in the context of nonrelativistic quantum mechanics. These conditions yield a monotonic series of lower limits on the "critical" value of the strength of the potential (for which a first bound state appears) which converges to the exact critical strength. We also obtain a sufficient condition for the existence of bound states in a central monotonic potential which yield an upper limit on the critical strength of the potential.Comment: 7 page

    Complete resummation of chirally-enhanced loop-effects in the MSSM with non-minimal sources of flavor-violation

    Get PDF
    In this article we present the complete resummation of the leading chirally-enhanced corrections stemming from gluino-squark, chargino-sfermion and neutralino-sfermion loops in the MSSM with non-minimal sources of flavor-violation. We compute the finite renormalization of fermion masses and the CKM matrix induced by chirality-flipping self-energies. In the decoupling limit Msusy>>v, which is an excellent approximation to the full theory, we give analytic results for the effective gaugino(higgsino)-fermion-sfermion and the Higgs-fermion-fermion vertices. Using these vertices as effective Feynman rules, all leading chirally-enhanced corrections can consistently be included into perturbative calculations of Feynman amplitudes. We also give a generalized parametrization for the bare CKM matrix which extends the classic Wolfenstein parametrization to the case of complex parameters lambda and A.Comment: 31 pages, 3 figures; typos correcte

    Yukawa unification in SO(10) with light sparticle spectrum

    Get PDF
    We investigate supersymmetric SO(10) GUT model with \mu<0. The requirements of top-bottom-tau Yukawa unification, correct radiative electroweak symmetry breaking and agreement with the present experimental data may be met when the soft masses of scalars and gauginos are non-universal. We show how appropriate non-universalities can easily be obtained in the SO(10) GUT broken to the Standard Model. We discuss how values of BR(b-->s \gamma) and (g-2)_\mu simultaneously in a good agreement with the experimental data can be achieved in SO(10) model with \mu<0. In the region of the parameter space preferred by our analysis there are two main mechanisms leading to the LSP relic abundance consistent with the WMAP results. One is the co-annihilation with the stau and the second is the resonant annihilation via exchange of the Z boson or the light Higgs scalar. A very interesting feature of SO(10) models with negative \mu is that they predict relatively light sparticle spectra. Even the heaviest superpartners may easily have masses below 1.5 TeV in contrast to multi-TeV particles typical for models with positive \mu.Comment: 23 pages, 5 figure

    Implementation of routine outcome measurement in child and adolescent mental health services in the United Kingdom: a critical perspective

    Get PDF
    The aim of this commentary is to provide an overview of clinical outcome measures that are currently recommended for use in UK Child and Adolescent Mental Health Services (CAMHS), focusing on measures that are applicable across a wide range of conditions with established validity and reliability, or innovative in their design. We also provide an overview of the barriers and drivers to the use of Routine Outcome Measurement (ROM) in clinical practice

    Economical adjunction of square roots to groups

    Full text link
    How large must an overgroup of a given group be in order to contain a square root of any element of the initial group? We give an almost exact answer to this question (the obtained estimate is at most twice worse than the best possible) and state several related open questions.Comment: 5 pages. A Russian version of this paper is at http://mech.math.msu.su/department/algebra/staff/klyachko/papers.htm V2: minor correction

    Effects of Supersymmetric Threshold Corrections on High-Scale Flavor Textures

    Get PDF
    Integration of superpartners out of the spectrum induces potentially large contributions to Yukawa couplings. These corrections, the supersymmetric threshold corrections, therefore influence the CKM matrix prediction in a non-trivial way. We study effects of threshold corrections on high-scale flavor structures specified at the gauge coupling unification scale in supersymmetry. In our analysis, we first consider high-scale Yukawa textures which qualify phenomenologically viable at tree level, and find that they get completely disqualified after incorporating the threshold corrections. Next, we consider Yukawa couplings, such as those with five texture zeroes, which are incapable of explaining flavor-changing proceses. Incorporation of threshold corrections, however, makes them phenomenologically viable textures. Therefore, supersymmetric threshold corrections are found to leave observable impact on Yukawa couplings of quarks, and any confrontation of high-scale textures with experiments at the weak scale must take into account such corrections.Comment: 25 pages, submitted to JHE

    Hitting sbottom in natural SUSY

    Get PDF
    We compare the experimental prospects of direct stop and sbottom pair production searches at the LHC. Such searches for stops are of great interest as they directly probe for states that are motivated by the SUSY solution to the hierarchy problem of the Higgs mass parameter - leading to a "Natural" SUSY spectrum. Noting that sbottom searches are less experimentally challenging and scale up in reach directly with the improvement on b-tagging algorithms, we discuss the interplay of small TeV scale custodial symmetry violation with sbottom direct pair production searches as a path to obtaining strong sub-TeV constraints on stops in a natural SUSY scenario. We argue that if a weak scale natural SUSY spectrum does not exist within the reach of LHC, then hopes for such a spectrum for large regions of parameter space should sbottom out. Conversely, the same arguments make clear that a discovery of such a spectrum is likely to proceed in a sbottom up manner.Comment: 18 pages, 8 figures,v2 refs added, JHEP versio

    HPV infection and immunochemical detection of cell-cycle markers in verrucous carcinoma of the penis

    Get PDF
    Penile verrucous carcinoma is a rare disease and little is known of its aetiology or pathogenesis. In this study we examined cell-cycle proteins expression and correlation with human papillomavirus infection in a series of 15 pure penile verrucous carcinomas from a single centre. Of 148 penile tumours, 15 (10%) were diagnosed as pure verrucous carcinomas. The expression of the cell-cycle-associated proteins p53, p21, RB, p16INK4A and Ki67 were examined by immunohistochemistry. Human papillomavirus infection was determined by polymerase chain reaction to identify a wide range of virus types. The expression of p16INK4A and Ki67 was significantly lower in verrucous carcinoma than in usual type squamous cell carcinoma, whereas the expression of p53, p21 and RB was not significantly different. p53 showed basal expression in contrast to usual type squamous cell carcinoma. Human papillomavirus infection was present in only 3 out of 13 verrucous carcinomas. Unique low-risk, high-risk and mixed viral infections were observed in each of the three cases. In conclusion, lower levels of p16INK4A and Ki67 expressions differentiate penile verrucous carcinoma from usual type squamous cell carcinoma. The low Ki67 index reflects the slow-growing nature of verrucous tumours. The low level of p16INK4A expression and human papillomavirus detection suggests that penile verrucous carcinoma pathogenesis is unrelated to human papillomavirus infection and the oncogenes and tumour suppressor genes classically altered by virus infection.Peer reviewedFinal Accepted Versio
    corecore