236 research outputs found
Ventilatory muscle strength, diaphragm thickness and pulmonary function in world-class powerlifters.
Resistance training activates the ventilatory muscles providing a stimulus similar to ventilatory muscle training. We examined the effects of elite powerlifting training upon ventilatory muscle strength, pulmonary function and diaphragm thickness in world-class powerlifters (POWER) and a control group (CON) with no history of endurance or resistance training, matched for age, height and body mass
How to screen for non-adherence to antihypertensive therapy
The quality of assessment of non-adherence to treatment in hypertensive is poor. Within this review, we discuss the different methods used to assess adherence to blood-pressure-lowering medications in hypertension patients. Subjective reports such as physicians’ perceptions are inaccurate, and questionnaires completed by patients tend to overreport adherence and show a low diagnostic specificity. Indirect objective methods such as pharmacy database records can be useful, but they are limited by the robustness of the recorded data. Electronic medication monitoring devices are accurate but usually track adherence to only a single medication and can be expensive. Overall, the fundamental issue with indirect objective measures is that they do not fully confirm ingestion of antihypertensive medications. Detection of antihypertensive medications in body fluids using liquid chromatography–tandem mass spectrometry is currently, in our view, the most robust and clinically useful method to assess non-adherence to blood-pressure-lowering treatment. It is particularly helpful in patients presenting with resistant, refractory or uncontrolled hypertension despite the optimal therapy. We recommend using this diagnostic strategy to detect non-adherence alongside a no-blame approach tailoring support to address the perceptions (e.g. beliefs about the illness and treatment) and practicalities (e.g. capability and resources) influencing motivation and ability to adhere
It\u27s not too Late for the Harpy Eagle (Harpia harpyja): High Levels Of Genetic Diversity and Differentiation Can Fuel Conservation Programs
Background: The harpy eagle (Harpia harpyja) is the largest Neotropical bird of prey and is threatened by human persecution and habitat loss and fragmentation. Current conservation strategies include local education, captive rearing and reintroduction, and protection or creation of trans-national habitat blocks and corridors. Baseline genetic data prior to reintroduction of captive-bred stock is essential for guiding such efforts but has not been gathered previously.
Methodology/Findings: We assessed levels of genetic diversity, population structure and demographic history for harpy eagles using samples collected throughout a large portion of their geographic distribution in Central America (n = 32) and South America (n = 31). Based on 417 bp of mitochondrial control region sequence data, relatively high levels of haplotype and nucleotide diversity were estimated for both Central and South America, although haplotype diversity was significantly higher for South America. Historical restriction of gene flow across the Andes (i.e. between our Central and South American subgroups) is supported by coalescent analyses, the haplotype network and significant FST values, however reciprocally monophyletic lineages do not correspond to geographical locations in maximum likelihood analyses. A sudden population expansion for South America is indicated by a mismatch distribution analysis, and further supported by significant (p,0.05) negative values of Fu and Li’s DF and F, and Fu’s FS. This expansion, estimated at approximately 60 000 years BP (99 000–36 000 years BP 95% CI), encompasses a transition from a warm and dry time period prior to 50 000 years BP to an interval of maximum precipitation (50 000–36 000 years BP). Notably, this time period precedes the climatic and habitat changes associated with the last glacial maximum. In contrast, a multimodal distribution of haplotypes was observed for Central America suggesting either population equilibrium or a recent decline.
Significance: High levels of mitochondrial genetic diversity in combination with genetic differentiation among subgroups within regions and between regions highlight the importance of local population conservation in order to preserve maximal levels of genetic diversity in this species. Evidence of historically restricted female-mediated gene flow is an important consideration for captive-breeding programs
Reconstruction of primary vertices at the ATLAS experiment in Run 1 proton–proton collisions at the LHC
This paper presents the method and performance of primary vertex reconstruction in proton–proton collision data recorded by the ATLAS experiment during Run 1 of the LHC. The studies presented focus on data taken during 2012 at a centre-of-mass energy of √s=8 TeV. The performance has been measured as a function of the number of interactions per bunch crossing over a wide range, from one to seventy. The measurement of the position and size of the luminous region and its use as a constraint to improve the primary vertex resolution are discussed. A longitudinal vertex position resolution of about 30μm is achieved for events with high multiplicity of reconstructed tracks. The transverse position resolution is better than 20μm and is dominated by the precision on the size of the luminous region. An analytical model is proposed to describe the primary vertex reconstruction efficiency as a function of the number of interactions per bunch crossing and of the longitudinal size of the luminous region. Agreement between the data and the predictions of this model is better than 3% up to seventy interactions per bunch crossing
Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk.
Blood pressure is a heritable trait influenced by several biological pathways and responsive to environmental stimuli. Over one billion people worldwide have hypertension (≥140 mm Hg systolic blood pressure or ≥90 mm Hg diastolic blood pressure). Even small increments in blood pressure are associated with an increased risk of cardiovascular events. This genome-wide association study of systolic and diastolic blood pressure, which used a multi-stage design in 200,000 individuals of European descent, identified sixteen novel loci: six of these loci contain genes previously known or suspected to regulate blood pressure (GUCY1A3-GUCY1B3, NPR3-C5orf23, ADM, FURIN-FES, GOSR2, GNAS-EDN3); the other ten provide new clues to blood pressure physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function. We also observed associations with blood pressure in East Asian, South Asian and African ancestry individuals. Our findings provide new insights into the genetics and biology of blood pressure, and suggest potential novel therapeutic pathways for cardiovascular disease prevention
The Neurotropic Parasite Toxoplasma Gondii Increases Dopamine Metabolism
The highly prevalent parasite Toxoplasma gondii manipulates its host's behavior. In infected rodents, the behavioral changes increase the likelihood that the parasite will be transmitted back to its definitive cat host, an essential step in completion of the parasite's life cycle. The mechanism(s) responsible for behavioral changes in the host is unknown but two lines of published evidence suggest that the parasite alters neurotransmitter signal transduction: the disruption of the parasite-induced behavioral changes with medications used to treat psychiatric disease (specifically dopamine antagonists) and identification of a tyrosine hydroxylase encoded in the parasite genome. In this study, infection of mammalian dopaminergic cells with T. gondii enhanced the levels of K+-induced release of dopamine several-fold, with a direct correlation between the number of infected cells and the quantity of dopamine released. Immunostaining brain sections of infected mice with dopamine antibody showed intense staining of encysted parasites. Based on these analyses, T. gondii orchestrates a significant increase in dopamine metabolism in neural cells. Tyrosine hydroxylase, the rate-limiting enzyme for dopamine synthesis, was also found in intracellular tissue cysts in brain tissue with antibodies specific for the parasite-encoded tyrosine hydroxylase. These observations provide a mechanism for parasite-induced behavioral changes. The observed effects on dopamine metabolism could also be relevant in interpreting reports of psychobehavioral changes in toxoplasmosis-infected humans
Specialized Learning in Antlions (Neuroptera: Myrmeleontidae), Pit-Digging Predators, Shortens Vulnerable Larval Stage
Unique in the insect world for their extremely sedentary predatory behavior, pit-dwelling larval antlions dig pits, and then sit at the bottom and wait, sometimes for months, for prey to fall inside. This sedentary predation strategy, combined with their seemingly innate ability to detect approaching prey, make antlions unlikely candidates for learning. That is, although scientists have demonstrated that many species of insects possess the capacity to learn, each of these species, which together represent multiple families from every major insect order, utilizes this ability as a means of navigating the environment, using learned cues to guide an active search for food and hosts, or to avoid noxious events. Nonetheless, we demonstrate not only that sedentary antlions can learn, but also, more importantly, that learning provides an important fitness benefit, namely decreasing the time to pupate, a benefit not yet demonstrated in any other species. Compared to a control group in which an environmental cue was presented randomly vis-à-vis daily prey arrival, antlions given the opportunity to associate the cue with prey were able to make more efficient use of prey and pupate significantly sooner, thus shortening their long, highly vulnerable larval stage. Whereas “median survival time,” the point at which half of the animals in each group had pupated, was 46 days for antlions receiving the Learning treatment, that point never was reached in antlions receiving the Random treatment, even by the end of the experiment on Day 70. In addition, we demonstrate a novel manifestation of antlions' learned response to cues predicting prey arrival, behavior that does not match the typical “learning curve” but which is well-adapted to their sedentary predation strategy. Finally, we suggest that what has long appeared to be instinctive predatory behavior is likely to be highly modified and shaped by learning
Differential analysis for high density tiling microarray data
<p>Abstract</p> <p>Background</p> <p>High density oligonucleotide tiling arrays are an effective and powerful platform for conducting unbiased genome-wide studies. The <it>ab initio </it>probe selection method employed in tiling arrays is unbiased, and thus ensures consistent sampling across coding and non-coding regions of the genome. These arrays are being increasingly used to study the associated processes of transcription, transcription factor binding, chromatin structure and their association. Studies of differential expression and/or regulation provide critical insight into the mechanics of transcription and regulation that occurs during the developmental program of a cell. The time-course experiment, which comprises an <it>in-vivo </it>system and the proposed analyses, is used to determine if annotated and un-annotated portions of genome manifest coordinated differential response to the induced developmental program.</p> <p>Results</p> <p>We have proposed a novel approach, based on a piece-wise function – to analyze genome-wide differential response. This enables segmentation of the response based on protein-coding and non-coding regions; for genes the methodology also partitions differential response with a 5' versus 3' versus intra-genic bias.</p> <p>Conclusion</p> <p>The algorithm built upon the framework of Significance Analysis of Microarrays, uses a generalized logic to define regions/patterns of coordinated differential change. By not adhering to the gene-centric paradigm, discordant differential expression patterns between exons and introns have been identified at a FDR of less than 12 percent. A co-localization of differential binding between RNA Polymerase II and tetra-acetylated histone has been quantified at a p-value < 0.003; it is most significant at the 5' end of genes, at a p-value < 10<sup>-13</sup>. The prototype R code has been made available as supplementary material [see Additional file <supplr sid="S1">1</supplr>].</p> <suppl id="S1"> <title> <p>Additional file 1</p> </title> <text> <p>gsam_prototypercode.zip. File archive comprising of prototype R code for gSAM implementation including readme and examples.</p> </text> <file name="1471-2105-8-359-S1.zip"> <p>Click here for file</p> </file> </suppl
The impact of a physician detailing and sampling program for generic atorvastatin: an interrupted time series analysis
Effects of branching spatial structure and life history on the asymptotic growth rate of a population
Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Theoretical Ecology 3 (2010): 137-152, doi:10.1007/s12080-009-0058-0.The dendritic structure of a river network creates directional dispersal and a hierarchical
arrangement of habitats. These two features have important consequences for the
ecological dynamics of species living within the network.We apply matrix population models to a stage-structured population in a network of habitat patches connected in a dendritic
arrangement. By considering a range of life histories and dispersal patterns, both constant
in time and seasonal, we illustrate how spatial structure, directional dispersal, survival, and
reproduction interact to determine population growth rate and distribution. We investigate
the sensitivity of the asymptotic growth rate to the demographic parameters of the model,
the system size, and the connections between the patches. Although some general patterns
emerge, we find that a species’ mode of reproduction and dispersal are quite important in its
response to changes in its life history parameters or in the spatial structure. The framework
we use here can be customized to incorporate a wide range of demographic and dispersal
scenarios.Funding for this work came from the James S. McDonnell Foundation (EEG, HJL, WFF). MGN was supported by grants from the National Science Foundation (CMG-0530830, OCE-0326734, ATM-0428122)
- …
