3,027 research outputs found

    Momentum resolved spin dynamics of bulk and surface excited states in the topological insulator Bi2Se3\mathrm{Bi_{2}Se_{3}}

    Full text link
    The prospective of optically inducing a spin polarized current for spintronic devices has generated a vast interest in the out-of-equilibrium electronic and spin structure of topological insulators (TIs). In this Letter we prove that only by measuring the spin intensity signal over several order of magnitude in spin, time and angle resolved photoemission spectroscopy (STAR-PES) experiments is it possible to comprehensively describe the optically excited electronic states in TIs materials. The experiments performed on Bi2Se3\mathrm{Bi_{2}Se_{3}} reveal the existence of a Surface-Resonance-State in the 2nd bulk band gap interpreted on the basis of fully relativistic ab-initio spin resolved photoemission calculations. Remarkably, the spin dependent relaxation of the hot carriers is well reproduced by a spin dynamics model considering two non-interacting electronic systems, derived from the excited surface and bulk states, with different electronic temperatures.Comment: 5 pages and 4 figure

    Statistical Properties of Fano Resonances in Atomic and Molecular Photoabsorption

    Get PDF
    Statistical properties of Fano resonances occurring in photoabsorption to highly excited atomic or molecular states are derived. The situation with one open and one closed channel is analyzed when the classical motion of the excited complex in the closed channel is chaotic. The closed channel subspace is modeled by random matrix theory. The probability distribution of the Fano parameter is derived both for the case of time reversal symmetry (TRS) and broken time reversal symmetry. For the TRS case the area distribution under a resonance profile relevant for low resolution experiments is discussed in detail.Comment: 4 pages, 4 figure

    New mobilities across the lifecourse: A framework for analysing demographically-linked drivers of migration

    Get PDF
    Date of acceptance: 17/02/2015Taking the life course as the central concern, the authors set out a conceptual framework and define some key research questions for a programme of research that explores how the linked lives of mobile people are situated in time–space within the economic, social, and cultural structures of contemporary society. Drawing on methodologically innovative techniques, these perspectives can offer new insights into the changing nature and meanings of migration across the life course.Publisher PDFPeer reviewe

    Orbital state and magnetic properties of LiV_2 O_4

    Full text link
    LiV_2 O_4 is one of the most puzzling compounds among transition metal oxides because of its heavy fermion like behavior at low temperatures. In this paper we present results for the orbital state and magnetic properties of LiV_2 O_4 obtained from a combination of density functional theory within the local density approximation and dynamical mean-field theory (DMFT). The DMFT equations are solved by quantum Monte Carlo simulations. The trigonal crystal field splits the V 3d orbitals such that the a_{1g} and e_{g}^{pi} orbitals cross the Fermi level, with the former being slightly lower in energy and narrower in bandwidth. In this situation, the d-d Coulomb interaction leads to an almost localization of one electron per V ion in the a_{1g} orbital, while the e_{g}^{pi} orbitals form relatively broad bands with 1/8 filling. 2The theoretical high-temperature paramagnetic susceptibility chi(T) follows a Curie-Weiss law with an effective paramagnetic moment p_{eff}=1.65 in agreement with the experimental results.Comment: 11 pages, 10 figures, 2 table

    A Solvable Regime of Disorder and Interactions in Ballistic Nanostructures, Part I: Consequences for Coulomb Blockade

    Full text link
    We provide a framework for analyzing the problem of interacting electrons in a ballistic quantum dot with chaotic boundary conditions within an energy ETE_T (the Thouless energy) of the Fermi energy. Within this window we show that the interactions can be characterized by Landau Fermi liquid parameters. When gg, the dimensionless conductance of the dot, is large, we find that the disordered interacting problem can be solved in a saddle-point approximation which becomes exact as gg\to\infty (as in a large-N theory). The infinite gg theory shows a transition to a strong-coupling phase characterized by the same order parameter as in the Pomeranchuk transition in clean systems (a spontaneous interaction-induced Fermi surface distortion), but smeared and pinned by disorder. At finite gg, the two phases and critical point evolve into three regimes in the um1/gu_m-1/g plane -- weak- and strong-coupling regimes separated by crossover lines from a quantum-critical regime controlled by the quantum critical point. In the strong-coupling and quantum-critical regions, the quasiparticle acquires a width of the same order as the level spacing Δ\Delta within a few Δ\Delta's of the Fermi energy due to coupling to collective excitations. In the strong coupling regime if mm is odd, the dot will (if isolated) cross over from the orthogonal to unitary ensemble for an exponentially small external flux, or will (if strongly coupled to leads) break time-reversal symmetry spontaneously.Comment: 33 pages, 14 figures. Very minor changes. We have clarified that we are treating charge-channel instabilities in spinful systems, leaving spin-channel instabilities for future work. No substantive results are change

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Non-supersymmetric heterotic model building

    Get PDF
    We investigate orbifold and smooth Calabi-Yau compactifications of the non-supersymmetric heterotic SO(16)xSO(16) string. We focus on such Calabi-Yau backgrounds in order to recycle commonly employed techniques, like index theorems and cohomology theory, to determine both the fermionic and bosonic 4D spectra. We argue that the N=0 theory never leads to tachyons on smooth Calabi-Yaus in the large volume approximation. As twisted tachyons may arise on certain singular orbifolds, we conjecture that such tachyonic states are lifted in the full blow-up. We perform model searches on selected orbifold geometries. In particular, we construct an explicit example of a Standard Model-like theory with three generations and a single Higgs field.Comment: 1+30 pages latex, 11 tables; v2: references and minor revisions added, matches version published in JHE

    Evidence for the Rare Decay B -> K*ll and Measurement of the B -> Kll Branching Fraction

    Get PDF
    We present evidence for the flavor-changing neutral current decay BK+B\to K^*\ell^+\ell^- and a measurement of the branching fraction for the related process BK+B\to K\ell^+\ell^-, where +\ell^+\ell^- is either an e+ee^+e^- or μ+μ\mu^+\mu^- pair. These decays are highly suppressed in the Standard Model, and they are sensitive to contributions from new particles in the intermediate state. The data sample comprises 123×106123\times 10^6 Υ(4S)BBˉ\Upsilon(4S)\to B\bar{B} decays collected with the Babar detector at the PEP-II e+ee^+e^- storage ring. Averaging over K()K^{(*)} isospin and lepton flavor, we obtain the branching fractions B(BK+)=(0.650.13+0.14±0.04)×106{\mathcal B}(B\to K\ell^+\ell^-)=(0.65^{+0.14}_{-0.13}\pm 0.04)\times 10^{-6} and B(BK+)=(0.880.29+0.33±0.10)×106{\mathcal B}(B\to K^*\ell^+\ell^-)=(0.88^{+0.33}_{-0.29}\pm 0.10)\times 10^{-6}, where the uncertainties are statistical and systematic, respectively. The significance of the BK+B\to K\ell^+\ell^- signal is over 8σ8\sigma, while for BK+B\to K^*\ell^+\ell^- it is 3.3σ3.3\sigma.Comment: 7 pages, 2 postscript figues, submitted to Phys. Rev. Let

    Measurement of Branching Fraction and Dalitz Distribution for B0->D(*)+/- K0 pi-/+ Decays

    Get PDF
    We present measurements of the branching fractions for the three-body decays B0 -> D(*)-/+ K0 pi^+/-andtheirresonantsubmodes and their resonant submodes B0 -> D(*)-/+ K*+/- using a sample of approximately 88 million BBbar pairs collected by the BABAR detector at the PEP-II asymmetric energy storage ring. We measure: B(B0->D-/+ K0 pi+/-)=(4.9 +/- 0.7(stat) +/- 0.5 (syst)) 10^{-4} B(B0->D*-/+ K0 pi+/-)=(3.0 +/- 0.7(stat) +/- 0.3 (syst)) 10^{-4} B(B0->D-/+ K*+/-)=(4.6 +/- 0.6(stat) +/- 0.5 (syst)) 10^{-4} B(B0->D*-/+ K*+/-)=(3.2 +/- 0.6(stat) +/- 0.3 (syst)) 10^{-4} From these measurements we determine the fractions of resonant events to be : f(B0-> D-/+ K*+/-) = 0.63 +/- 0.08(stat) +/- 0.04(syst) f(B0-> D*-/+ K*+/-) = 0.72 +/- 0.14(stat) +/- 0.05(syst)Comment: 7 pages, 3 figures submitted to Phys. Rev. Let

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
    corecore